Cooling apparatus for electronic devices

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C165S104330, C257S714000, C361S707000

Reexamination Certificate

active

06313990

ABSTRACT:

TECHNICAL FIELD
This invention relates to cooling apparatus for electronic devices and, more particularly, to a cooling system having a heat transfer device contacting a heat-producing component and communicating with a liquid coolant reservoir via first and second conduits, heat transfer fins mounted on the reservoir, and a fan positioned to direct ambient air through the fins, said fan and said fins being isolated from the heat-producing component to isolate the component from flow of ambient air.
BACKGROUND OF THE INVENTION
It is well known that computers and other electronic devices commonly include components that produce heat. Various types of cooling systems have been proposed for removing heat from the heat-producing components to maintain the electronic device within operating temperature limits. Known systems include passive cooling systems and systems that employ gaseous and/or liquid coolants actively brought into heat transfer contact with the heat-producing components. There are a number of drawbacks associated with the presently known systems. These include noise and dust and contamination of the electronic components associated with systems having fans to create an air stream for cooling electronic components or other elements (e.g., radiators) of the cooling system. They also include lack of sufficient cooling capacity or bulkiness and/or complexity resulting from efforts to increase cooling capacity. The principal object of the present invention is to provide a cooling system that avoids the drawbacks discussed above and is especially appropriate for use with small computers, including personal computers, work stations, servers, and small main frames.
BRIEF SUMMARY OF THE INVENTION
The present invention provides a cooling system for an electronic device having a housing defining an interior space and at least one heat-producing component mounted inside the housing in the interior space. According to an aspect of the invention, the system comprises a heat transfer device having an internal passageway extending between an inlet port and an outlet port. The passageway is in heat exchanging contact with the heat-producing component. A heat dissipation device has a casing defining a reservoir for a liquid coolant. The casing has portions made from a heat conducting material, an inlet opening, and an outlet opening spaced from the inlet opening. A plurality of heat transfer fins are mounted on and are in heat exchanging contact with an outside surface of the heat conducting portions of the casing. A first conduit extends between the outlet port of the heat transfer device and the inlet opening of the casing. A second conduit extends between the outlet opening of the casing and the inlet port of the heat transfer device. A fan is positioned adjacent to an end of the heat dissipation device and the fins. The fan is in communication with ambient air to direct ambient air through the fins to dissipate heat from liquid coolant in the reservoir. The system has walls separating the fan and the fins from the interior space of the device housing to isolate the heat-producing component from flow of ambient air.
The system preferably also includes a pump. The pump is positioned to pump liquid coolant out of the reservoir through the outlet opening, through the second conduit, the passageway, and the first conduit, and back into the reservoir through the inlet opening.
The system may be used with various types of electronic devices, including various types of computers. A first embodiment of the invention is designed for use with a personal computer. The housing is a tower case having a bottom wall. The system includes a subhousing mounted on the bottom wall. The heat dissipation device and the fan are mounted in the subhousing. This system configuration has the advantage of being readily incorporated into any computer mounted in a tower case. The system may be incorporated initially as part of the design of the computer, or also may be added as a retrofit. The system leaves the footprint of the tower case unchanged and alters the space occupied by the tower case only a small amount that results from the increase in height caused by the presence of the subhousing.
A second embodiment of the invention is designed for use in industrial computers of a type having a housing in the form of a rack mount case. The case has a first set of vent openings extending through a side wall thereof, and a second set of vent openings extending through a side wall thereof, spaced from the first set. The heat dissipation device has opposite ends positioned adjacent to the first and second sets of vent openings, respectively. In this embodiment of the invention, the system is easily adapted to a rack mount configuration. Positioning the vent openings through side walls avoids any problem of air flow being blocked by vertically adjacent devices on a multi-tiered rack. The versatility of this embodiment is further increased by the fact that the first and second sets of vent openings may be placed at various locations on the case side walls. The two sets of vent openings may extend through opposite side walls or through side walls that are perpendicular to each other.
The system also may be used to cool one or more heat-producing components and to cool various types of heat-producing components. For example, the system may be used to cool a power supply having a plurality of heat-producing elements. In such case, the system preferably includes a heat sink on which the heat-producing elements are mounted and which defines a pair of opposite channels. The passageway is formed by a U-shaped conduit that has opposite legs extending through the channels, respectively, in heat exchanging contact with the heat sink. The U-shaped conduit defines the inlet port and the outlet port.
Another embodiment of the heat transfer device comprises a cooling plate having a first wall in heat exchanging contact with a complementary surface of the heat-producing component. A second wall of the cooling plate is contoured to form, with portions of the first wall, the passageway.
Another embodiment of the heat transfer device comprises a cooling plate having an inner face along which a serpentine channel extends. The face is secured in liquid tight engagement with a surface of the heat-producing component. The passageway is defined by the channel and the surface. Liquid coolant circulating through the passageway is in direct contact with the surface.
In systems having heat transfer devices with the characteristics last described, the heat-producing component preferably includes an outer plate portion having a plurality of openings extending therethrough. An outer surface of the outer plate portion forms the surface of the heat-producing component that is in engagement with the inner face of the cooling plate. The cooling plate is secured to the outer plate portion, to secure the face in liquid tight engagement with the outer surface, by a plurality of fasteners extending through the openings through the outer plate portion, respectively, and corresponding openings in the cooling plate. The cooling plate has a plurality of projections, one for each opening in the outer plate portion, extending into the openings in the outer plate portion to inhibit lateral movement of the cooling plate relative to the outer plate portion. This arrangement provides a relatively inexpensive mounting for the cooling plate that is strong and reliable.
The invention also provides a computer into which cooling apparatus is incorporated. According to an aspect of the invention, the computer comprises a housing defining an inner space, at least one heat-producing component mounted inside the housing in the interior space, and cooling apparatus as described above. The computer may also include one or more of the preferred or alternative features described above.
The invention also provides cooling apparatus for a power supply of an electronic device, said power supply having a plurality of heat-producing elements. According to an aspect of the invent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooling apparatus for electronic devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooling apparatus for electronic devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling apparatus for electronic devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2617735

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.