Cooking oil additive and method of using

Food or edible material: processes – compositions – and products – Processes – Preparing or treating triglyceridic fat or oil – or processes...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S423000, C426S424000, C423S331000, C106S600000, C502S407000

Reexamination Certificate

active

06210732

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a composition and method for rejuvenating cooking oils and more particularly, to a composition and method for treating and prolonging the life of frying oils.
Frying oils decompose over time and use due to the formation and acquisition of various contaminants during cooking. In addition, the cooking oil picks up particulate and soluble contaminants in food uses from the food being fried. These impurities detract from the taste and texture of the food and additionally the cooking process then takes longer. The accumulation of these contaminants results in a visibly darker color to the oil, which color gets darker with use, including higher levels of contaminants as well.
Generally speaking, in restaurant use frying oils may be used for approximately three to four days and then must be discarded. In this manner the quality of the food being fried can be kept uniform.
Accordingly, a principal object of the subject invention is to increase the useful life of frying oils.
SUMMARY OF THE INVENTION
This and other objects may be attained by the subject invention wherein the rate of degradation of cooking oil can be reduced, thereby extending the useful life of the oil. The composition of the subject invention reduces the build up rate of free fatty acids and polar substances, simultaneously reducing the oxidation of the oil and carbon build up on the fryer walls and burners.
The composition of the subject invention comprises a mixture of calcium silicate and citric acid and is utilized in a method for extending the useful life of the cooking oil by blending the calcium silicate with the citric acid, introducing the mixture to the cooking oil and allowing to mix in the oil through convection currents in the oil. After an initial period, the oil is filtered on a predetermined schedule and a fresh composition mixture of the subject invention is added to the filtered oil. The oil is filtered and the composition of the subject invention is added on a daily or more frequent basis, dependent on use.
DETAILED DESCRIPTION OF THE INVENTION
The subject invention involves a composition mixture of citric acid and calcium silicate and the method of so using that composition mixture for prolonging the cooking life of a frying oil.
In formulating the composition mixture, the calcium silicate is milled to a fine powder of approximately 75 microns and is a food grade synthetic amorphous precipitated calcium silicate having a bulk density of less than 1 pound per gallon, a pH of 10 (in a 5% solution), and a surface area of greater than 300 cubic meters BET.
The citric acid is also food grade and a fine powder of approximately 75 microns.
The calcium silicate is blended with the citric acid to a mixture that comprises 70%-90% calcium silicate and 10%-30% citric acid, preferably 75% calcium silicate and 25% citric acid.
In the method of the subject invention the compound mixture is introduced into the hot oil (about 275° F. to 350° F.) and its particles allowed to circulate in the oil through the natural convective movement created when heated oil on the bottom of the container rises to the top. The compound mixture of the subject invention is thus uniformly mixed and suspended in the frying oil and is immediately activated. After a predetermined period of use, sometimes 1 day, but generally every 6-8 hours, dependent on the nature and amount of use of the oil, the oil is filtered to remove crumbs and other sediment. The filtered oil is returned to the fryer and the compound mixture of the subject invention is added in an amount sufficient to prevent contamination of the oil. Generally, the appropriate amount of compound mixture to add to the oil is from 50 to 70 milliliters dry volume per 22.68 kg. (50 lbs.) of frying oil, and preferably 60 milliliters dry volume per 22.68 kg.
The preferred cooking oils and frying oils include vegetable derived, animal derived, and marine source derived fats and fatty oils that are liquids at the particular temperature that is necessary for the desired cooking effect. Illustrative sources of edible vegetable oil include canola, coconut, comgerm, cotton seed, olive, palm, peanut, rapeseed, safflower, sesame seed, soy bean and sunflower. Edible animal derived oil includes lard and tallow. Other oils may also be used. It is intended that the oils be useful for cooking at temperatures from 2750-370° F. and preferably at ranges from 300° F.-350° F. without significant deterioration for a period of time.
In evaluating the subject invention a test for determining the amount of polar substances in fats was performed as described in more complete detail in U.S. Pat. No. 4,731,332, hereinafter referred to as the Blumenthal test, by mixing a predetermined amount of a one-phase test solution with a predetermined amount of the fat. The test solution comprises an indicator and a solvent. The indicator is soluble in the solvent and the fat is substantially immiscible with the solvent. The pH of the test solution is such that the indicator in combination with polar substances extracted from the fat will provide polychromatic visible or fluorescent color changes in the test solution in response to characteristic amounts of polar substances in the fat. The indicator and solvent are present in amounts effective to provide the polychromatic visible or fluorescent color change which depends on the amount of polar substances in the fat. The fat and test solution are allowed to separate into a solvent phase and a fat phase, and the amount of polar substances in the fat is determined from the color developed in the solvent phase by comparing said developed color to a known standard. Such a test is available from Miroil of Allentown, Pa., as the Fry Quality Assurance Test-PCM.
Another test also referred to as the Blumenthal test, and used in evaluating the subject invention is described in U.S. Pat. No. 4,349,353, determines the amount of alkaline substances in used cooking fat. In this test, a predetermined amount of test solution is mixed with a predetermined amount of fat. The test solution comprises a pH indicator dye having a visible color change in the pH range of from about 2.5 to about 7.0 and a solvent in which the dye is soluble and with which the fat is immiscible. The dye and solvent are present in the test solution in amounts effective to provide a visible color change which depends upon the amount of alkaline substance, e.g., soaps, in the fat. The pH of the test solution is such that the color of the test solution prior to the mixing step corresponds to the color of the dye at the lower end of the color change range for the dye. After mixing, the fat and test solution are allowed to separate into a solvent phase and a fat phase. The amount of alkaline substances in the fat is then determined from the color developed in the solvent phase by comparing the developed color to a known standard, e.g., visually, in a calorimeter or in a spectrophotometer. Preferably, the color developed in the solvent phase is compared with a set of colors standardized so that each color corresponds to a specified amount of soap and/or other alkaline substances in the predetermined amount of fat. This test is available from Miroil of Allentown, Pa., as the Frying Quality Assurance Test-ACM.
In the Blumenthal tests of frying oils utilizing the compound mixture of the subject invention, a numerical scale was used to indicate specific color shades observed against colors depicted on a standardized color card. Thus, on the polar contaminate test referred to above, a blue color (1) indicates good oil, and becomes lighter (2), changing to light green (3) and finally dark green (4), as the oil goes bad (3 and 4 being unacceptable).
In the alkaline contaminate test, the colors vary from yellow (0) to light green (1) to dark green (2) to light blue (3) to dark blue (4) as the oil goes from good to unacceptable (2, 3 and 4 being unacceptable).


REFERENCES:
patent: 3557008 (1971-01-01), Jennings
patent: 3591515 (1971-07-01), Lovely
patent: 3649656 (1972-03-01)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooking oil additive and method of using does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooking oil additive and method of using, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooking oil additive and method of using will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552906

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.