Cooking appliance and method of use

Food or edible material: processes – compositions – and products – Measuring – testing – or controlling by inanimate means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S233000, C426S438000, C426S509000, C426S523000

Reexamination Certificate

active

06777009

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to institutional cooking appliances and cooking food in such appliances. More particularly, the present invention relates to an improved cooking appliance utilizing a computerized controller and an improved method for cooking food utilizing said improved cooking appliance so as to obtain a consistent cooked food product.
BACKGROUND OF THE INVENTION
Restaurants strive to meet customer's needs and expectations at every opportunity. Such needs and expectations, however, are oftentimes inconsistent. For example, customers typically seek fast service, even to the extent of utilizing “drive-through” or “fast food” restaurants. In some restaurants, the customer may not need to leave his or her automobile to hurriedly place an order, to be served or to pay for the food. That same customer, however, will also want food that is fresh and well prepared. That same customer does not want an overcooked or overheated food item.
The restaurant also has certain needs and expectations. The restaurant will expect to prepare a significant volume of properly cooked food. The restaurant will typically purchase or lease specialized industrial appliances to prepare food on a large scale. That cost is significant. The restaurant will also seek to consistently serve quality, well-cooked food. Consistent food preparation is a constant challenge for the establishment and its employees. The restaurant further expects to be profitable. The restaurant will, therefore, seek to minimize both fixed and variable cost, including labor costs. One way of reducing labor costs is to require a single employee to perform multiple tasks. For example, the same employee that operates a cooking appliance may also be required to take a customer's order, package cooked (or other) food, deliver that food to the customer or process the financial transaction. As the food service employee is asked to provide such a wide range of tasks, it can be difficult to insure food quality through proper operation of the cooking appliances.
Restaurants often use industrial cooking appliances to prepare large quantities of food. One such industrial appliance is a deep fat fryer, including those manufactured by the Henny Penny Corporation of Eaton, Ohio. Prior art electric heating systems are known to provide a plurality of coils that surround the cooking well so that heat is transferred from the coils (sometimes referred to as the heating elements) to the oil in the cooking well. Prior art gas heating systems are known to provide tubes or pathways of heated air that surround the cooking well to impart heat to the oil.
Conventional use of such a fryer entails several steps. A predetermined amount of shortening is placed in the fryer's cooking well. In its unheated state, certain types of shortening consist of a solid with a paste-like consistency and appearance. The fryer's heating element is operated to melt the shortening to a liquid oil, and then to heat the oil to a desired cooking temperature. Other oils are conventionally provided in liquid form, even at ambient temperatures. The fryer is provided with an oil temperature sensor. Once the sensor indicates that a desired cooking temperature has been reached, a food product to be cooked is loaded into a carrier. The carrier is placed over and then mechanically “dropped” or eased into the hot cooking oil. Alternatively, the food product may be placed directly into the cooking well without use of a carrier or the like. As a result of this drop, it is known that the cooking oil will encounter “thermal shock,” a lowering of the cooking oil temperature. It is known in the art to anticipate the drop and compensate for the anticipated drop by activating the heating system as soon as the cook cycle is initiated, regardless of whether the control system senses a drop in the oil temperature sufficient to cause the heating control to switch on. This practice is intended to remove the inherent delay the physical temperature sensing device requires to register the drop in oil temperature and to cause heating of the oil to begin.
It is further known in the art to provide the fryer a timer that should be activated consistently relative to the drop of uncooked food product into the cooking oil. The timer ideally operates to track the cook time and, once that time has expired, cooperates with an alarm to alert the operator of the conclusion of a cooking cycle.
The food product is typically cooked in the oil at a programmed or “set” temperature for a programmed or “set” period of time, regardless of batch size or the starting temperature of the food product or the starting temperature of the cooking oil. In many instances, these settings are fixed, making no compensation for temperature changes in the oil due to differing product temperatures or batch sizes. (Differing batch sizes may arise due to differing numbers of items being cooked or differently sized items, such as differently sized chicken breasts.) In more sophisticated appliances, often referred to in the art as “compensating controls,” adjustments in cook time are made according to a linear scheme to compensate for oil temperature variations. Such schemes, in general, provide that if the sensed oil temperature drops “x” degrees, the cook time is augmented “y” percent; if the sensed oil temperature drops by “2x” degrees, the cook time is augmented “2y” percent; etc.
Another prior art appliance strategy is to manage the cooking oil temperature according to a predetermined temperature curve. The basic intent of this strategy is to expose the product being cooked to a similar environment for each cook cycle. An unfortunate by-product of this approach is that it tends to cook many batches slower than necessary because the predetermined temperature curve is typical based upon cooking a full or complete load. Accordingly, less than a full load is subjected to a lower cook cycle than is actually needed. The prior art has failed to recognize that the cook cycle and its associated attributes do not necessarily follow a linear model or scheme.
At the conclusion of that “set” time, an alarm sounds to alert the operator. The fryer is opened and the carrier is raised from the cooking well. The food product may be suspended over the cooking well for a brief period to allow hot oil to drain back into the cooking well. The cooked food product is then removed from the carrier and placed in a warming tray or the like for service to a customer.
Deep fat fryers are widely used to cook various food products, including but not limited to chicken, beef, fish, onions and potato products such as french fries and potato cakes. In each case, it is desirable to produce a consistently and properly cooked product. For example, undercooked chicken or meat may be contaminated by disease such as “
e coli
.” At the same time, overcooked chicken or meat is undesirable to the customer.
The inventor has determined that variations in the cooked product may result from a variety of causes. These causes range from variations in the heating parameters, inherent limitations in prior art fryers, and variable operation of the fryer by an employee who has multiple tasks to perform. Such causes are discussed in greater detail hereinbelow. One limitation of prior art fryers is oil temperature stratification. The inventor has discovered that this condition results in different areas of the cooking well having oil heated to differing temperature. Oil temperature stratification occurs gradually over time due to idling or rapidly after an initial heat-up of the fryer. A simplified diagrammatic example of oil temperature stratification is shown in
FIG. 1
, which shows a cooking well with 3 levels of stratification. In this example, the temperature sensor is placed near the top of the cooking well. The desired cooking temperature is 325° F. and, as shown, the temperature sensor indicates that the cooking oil temperature is 325° F. However, due to oil temperature stratification, the oil temperature in the middle strata is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooking appliance and method of use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooking appliance and method of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooking appliance and method of use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3360172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.