Conveyor system with intermediate drive and related method

Conveyors: power-driven – Conveyor section – Endless conveyor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06481567

ABSTRACT:

TECHNICAL FIELD
The present invention relates to conveyors and, more particularly, to an intermediate drive and related method for driving at least one, and preferably a plurality of modular link conveyor belts forming part of a conveyor system.
BACKGROUND OF THE INVENTION
Conventional conveyor systems employing endless belts are typically driven at one by a drive sprocket coupled to a rotating shaft. At the opposite end, an idler sprocket coupled to an idler shaft provides the necessary support function. Together, the drive and idler sprockets support the belt as it traverses along a corresponding guide rail or like structure to convey or move articles from one location to another.
While this arrangement is acceptable for most uses, driving or assisting the driving of a belt using an intermediate drive is desirable in some situations. One example of an intermediate drive for a “holding” conveyor system is disclosed in U.S. Pat. No. 4,142,625 to Bourgeois. In this conveyor system, a pair of parallel belts having longitudinally extending drive chain portions include rollers for rolling along a flat support table. One belt is driven over a first sprocket coupled to an intermediate drive shaft, while the other is trained under a spaced second sprocket carried on the same shaft. As a result of this “over/under” arrangement, the parallel belts are simultaneously driven in opposite directions when the single shaft supporting both spaced drive sprockets is rotated.
While this intermediate drive arrangement may be suitable for its intended purpose, several limitations remain. The first and perhaps most obvious limitation is that a catenary is formed in each just upstream and just downstream of each drive sprocket. Catenaries are generally undesirable, since they increase the incidence with which objects may become trapped between the conveyor belt and the sprocket. An object trapped in this position may create a deleterious jam, which in turn results in corresponding system downtime until appropriate corrective action is taken. Also, even a single catenary generally prevents the conveyor system from being turned on its side or inverted during operation.
Another shortcoming is that the '625 patent does not suggest using the intermediate drive unit in conjunction with a conventional end drive unit. In particularly long sections of a conveyor, the weight of the corresponding endless belt and the concomitant increase in frictional resistance creates considerable stress and wear on both the sprocket and the links or other modular structures forming the belt. Of course, this increased wear is deleterious, since it reduces the service life of the main components in the conveyor system, which in turn increases the frequency with which maintenance is required.
In an effort to address and overcome these problems, U.S. Pat. No. 5,303,817 to Kissee discloses an intermediate drive assist for driving particularly long sections of a modular link conveyor belt. The drive assist employs a second, separately driven conveyor belt for simultaneously engaging and driving both the forward and return runs of the particular belt section. Each link forming the belt used in the assist includes a projection that interleaves in a corresponding recess in a link on the belt section. This is supposed to create an efficient force-transmitting engagement.
While this intermediate drive assist may generally enhance performance as compared to using an end drive alone, the improvement comes at a cost. Although the loading on the individual links may be reduced, the overall wear profile is increased, since the underside surfaces of the belt are engaged along both the forward and return runs. Requiring a second belt that must be tensioned and maintained throughout its life to ensure proper operation is also problematic. If the belt tension and wear is not kept in check, slipping may occur, which of course reduces efficiency and otherwise deleteriously effects the overall performance of the conveyor system.
Thus, a need is identified for an improved intermediate drive arrangement for driving at least one, and preferably a plurality of conveyor belts forming part of an overall conveyor system. In particular, the need for a catenary in a belt driven by an intermediate drive would be eliminated, which would not only improve performance, but also would reduce the incidence of deleterious jams. Wear could be reduced by providing an intermediate drive arrangement that engages the conveyor belt along only one of the runs, and most preferably, the return run. Also, the conveyor system with the intermediate drive should be capable of operating in any orientation, including even upside-down, without experiencing any reduction in efficiency or increase in wear. By addressing these needs, the end result would be a conveyor system having an intermediate drive that is an improvement over prior art proposals, especially in terms of operational flexibility and reliability.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the invention, a conveyor system is disclosed comprising at least one conveyor belt formed of a plurality of modular links having at least one pair of guide tabs. At least one guide rail is provided for guiding the conveyor belt. The guide rail has upper and lower guide tracks for engaging the guide tabs of the links and guiding the conveyor belt along a forward and a return run, respectively. The guide rail also has a recessed portion along which the conveyor belt is guided. A drive for the belt includes at least one sprocket juxtaposed to the recessed portion of the guide rail. This sprocket engages the conveyor belt to drive it along the guide rail.
In the most preferred embodiment, the recessed portion of the guide rail adjacent to the drive is contoured or curved to correspond in shape to a peripheral surface of the sprocket. This allows for placement of the sprocket in juxtaposition to the belt. The modular links may further include a depending arm for carrying each guide tab, which is preferably an inwardly projecting transverse tab for engaging the guide tracks of the guide rail along the forward and return runs, respectively. The links may further include an apex and a pair of legs, with the apex including a slot for receiving a transverse member extending through an aperture in each leg of an adjacent link. As a result of this arrangement, the conveyor belt is capable of expanding and contracting in a longitudinal dimension.
The drive preferably includes a shaft for carrying the sprocket, along with first and second supports for supporting the shaft. The supports may be in the form of plates, each having an aperture for receiving the shaft. The support plates may be carried on either side of a single guide rail. A bushing may be positioned in the aperture in each support plate to create a low friction bearing surface for the shaft. A motive device is also provided for rotating the shaft, which in turn rotates the sprocket and drives the belt.
In one embodiment, a plurality of guide rails are provided for guiding a plurality of conveyor belts. Accordingly, the drive includes a plurality of sprockets mounted on a common shaft, each for driving at least one of the conveyor belts. Preferably, each of the plurality of guide rails is an I-beam guide rail. Like in the singular embodiment, the shaft is supported by first and second supports, but each support is carried by at least one of the plurality of guide rails (and most preferably, the first-in-line and last-in-line guide rails). Spacers may also be provided for spacing each shaft support from the adjacent guide rail, or the adjacent pairs of guide rails from each other.
In accordance with a second aspect of the present invention, a drive for a conveyor system having a plurality of conveyor belts, each driven along a separate guide rail having a recessed portion, is disclosed. The drive comprises at least one drive sprocket for engaging and driving each of the conveyor belts in the same direction. A shaft supports the drive sprockets, and first a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Conveyor system with intermediate drive and related method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Conveyor system with intermediate drive and related method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conveyor system with intermediate drive and related method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2971235

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.