Electrical computers: arithmetic processing and calculating – Electrical digital calculating computer – Particular function performed
Reexamination Certificate
1999-08-19
2002-07-02
Ngo, Chuong Dinh (Department: 2184)
Electrical computers: arithmetic processing and calculating
Electrical digital calculating computer
Particular function performed
Reexamination Certificate
active
06415308
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to microprocessors and, more particularly, to a processor architecture employing an improved floating point unit (FPU) and a computer system employing the processor.
BACKGROUND OF THE INVENTION
The ever-growing requirement for high performance computers demands that computer hardware architectures maximize software performance. Conventional computer architectures are made up of three primary components: (1) a processor, (2) a system memory and (3) one or more input/output devices. The processor controls the system memory and the input/output (“I/O”) devices. The system memory stores not only data, but also instructions that the processor is capable of retrieving and executing to cause the computer to perform one or more desired processes or functions. The I/O devices are operative to interact with a user through a graphical user interface (“GUI”) (such as provided by Microsoft Windows™ or IBM OS/2™), a network portal device, a printer, a mouse or other conventional device for facilitating interaction between the user and the computer.
Over the years, the quest for ever-increasing processing speeds has followed different directions. One approach to improve computer performance is to increase the rate of the clock that drives the processor. As the clock rate increases, however, the processor's power consumption and temperature also increase. Increased power consumption is expensive and high circuit temperatures may damage the processor. Further, the processor clock rate may not increase beyond a threshold physical speed at which signals may traverse the processor. Simply stated, there is a practical maximum to the clock rate that is acceptable to conventional processors.
An alternate approach to improve computer performance is to increase the number of instructions executed per clock cycle by the processor (“processor throughput”). One technique for increasing processor throughput is pipelining, which calls for the processor to be divided into separate processing stages (collectively termed a “pipeline”). Instructions are processed in an “assembly line” fashion in the processing stages. Each processing stage is optimized to perform a particular processing function, thereby causing the processor as a whole to become faster.
“Superpipelining” extends the pipelining concept further by allowing the simultaneous processing of multiple instructions in the pipeline. Consider, as an example, a processor in which each instruction executes in six stages, each stage requiring a single clock cycle to perform its function. Six separate instructions can therefore be processed concurrently in the pipeline; i.e., the processing of one instruction is completed during each clock cycle. The instruction throughput of an n-stage pipelined architecture is therefore, in theory, n times greater than the throughput of a non-pipelined architecture capable of completing only one instruction every n clock cycles.
Another technique for increasing overall processor speed is “superscalar” processing. Superscalar processing calls for multiple instructions to be processed per clock cycle. Assuming that instructions are independent of one another (the execution of each instruction does not depend upon the execution of any other instruction), processor throughput is increased in proportion to the number of instructions processed per clock cycle (“degree of scalability”). If, for example, a particular processor architecture is superscalar to degree three (i.e., three instructions are processed during each clock cycle), the instruction throughput of the processor is theoretically tripled.
These techniques are not mutually exclusive; processors may be both superpipelined and superscalar. However, operation of such processors in practice is often far from ideal, as instructions tend to depend upon one another and are also often not executed efficiently within the pipeline stages. In actual operation, instructions often require varying amounts of processor resources, creating interruptions (“bubbles” or “stalls”) in the flow of instructions through the pipeline. Consequently, while superpipelining and superscalar techniques do increase throughput, the actual throughput of the processor ultimately depends upon the particular instructions processed during a given period of time and the particular implementation of the processor's architecture.
The speed at which a processor can perform a desired task is also a function of the number of instructions required to code the task. A processor may require one or many clock cycles to execute a particular instruction. Thus, in order to enhance the speed at which a processor can perform a desired task, both the number of instructions used to code the task as well as the number of clock cycles required to execute each instruction should be minimized.
Statistically, certain instructions are executed more frequently than others. If the design of a processor is optimized to rapidly process the instructions which occur most frequently, then the overall throughput of the processor can be increased. Unfortunately, the optimization of a processor for certain frequent instructions is usually obtained only at the expense of other less frequent instructions, or requires additional circuitry, which increases the size of the processor.
As computer programs have become more graphic-oriented, processors have had to deal increasingly with the conversion between floating point and integer representations of numbers. Thus, to enhance the throughput of a processor that must generate data necessary to represent graphical images, it is desirable to optimize the processor to efficiently convert floating point data to integer data.
Therefore, what is needed in the art is an efficient system and method for converting numbers from floating point notation to integer notation and a computer system employing the same. Preferably, the optimization of the processor should not require any additional hardware or degrade the performance of the processor in performing tasks other than floating point to integer conversions.
SUMMARY OF THE INVENTION
To address the above-discussed deficiencies of the prior art, it is a primary object of the present invention to provide an efficient system and method for converting numbers from floating point notation to integer notation and a computer system employing the system or the method.
In the attainment of the above primary object, the present invention provides, for use in a processor having integer and floating point execution cores, logic circuitry for, and a method of, converting negative numbers from floating point notation to integer notation. In one embodiment, the logic circuitry includes: (1) a shifter that receives a number in floating point notation and shifts a fraction portion of the received number as a function of an exponent portion thereof to yield a shifted fraction portion and rounding data, (2) a one's complementer, coupled to the shifter, that inverts the shifted fraction portion to yield an unincremented inverted shifted fraction portion, (3) an incrementer, coupled to the one's complementer, that increments the unincremented inverted shifted fraction portion to yield an incremented inverted shifted fraction portion and (4) a multiplexer, coupled to the one's complementer and the incrementer, that selects one of the unincremented inverted shifted fraction portion and the incremented inverted shifted fraction portion based on the rounding data thereby to yield the received number in integer notation.
The present invention therefore fundamentally reorders the process by which numbers are converted from floating point to integer notation to allow such numbers to be converted faster (typically expressed in terms of clock cycles) and, in some embodiments, as a pipelined process. The present invention is founded upon the novel realization that the two's complement of a rounded-up, negative floating point number is equivalent to the one's complem
Maxin John L.
National Semiconductor Corporation
Ngo Chuong Dinh
LandOfFree
Converting negative floating point numbers to integer... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Converting negative floating point numbers to integer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Converting negative floating point numbers to integer... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2833412