Converting circuits and bandwidth management apparatus in...

Multiplex communications – Communication techniques for information carried in plural... – Adaptive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S356000

Reexamination Certificate

active

06529523

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a converting circuit and bandwidth management apparatus in a mixed network obtained by mixing an STM and ATM networks. More particularly, the invention relates to a converting circuit for converting time division multiplexed frames to ATM cells or ATM cells to time division multiplexed frames, and to an ATM switch bandwidth management apparatus for managing the bandwidth of STM calls.
Recent progress in ATM (Asynchronous Transfer Mode) technology has been remarkable and some ATM switch networks have been constructed. Nevertheless, replacing all presently existing STM (Synchronous Transfer Mode) switch networks is not possible because of the costs involved and, for the time being, STM and ATM networks will continue to be used together. However, there is little doubt that use of ATM, which is advantageous in terms of transferring large quantities of data, will gradually increase and that ATM will become the mainstay of switching networks. A problem encountered when two types of networks, namely STM and ATM switch networks, are used together is that dual transmission lines must be provided. This is wasteful of equipment. Accordingly, an important problem to be solved in the future involves a method of sending data from an STM network to an ATM network and vice versa.
FIG. 17
shows an example of a time division multiplexed frame used in an STM network. This is an example in which one frame period T has been partitioned into n (e.g., 64) time slots TS
1
~TS
64
. Here a maximum of 64 channels of data can be time division multiplexed into the time slots TS
1
~TS
64
. Twenty frames construct a subframe. Each item of channel data is composed of eight bits (one byte) and has a bit rate of 8×8 K=64 (Kbps) per time slot, where 8 KHz is associated with one frame.
FIG. 18
is a diagram useful in describing the format of a cell in an ATM network An ATM cell is composed of a 5-byte cell header HD and a 48-byte payload PLD. The header HD includes (1) a generic flow control (GFC) used in flow control between links, (2) a virtual path identifier (VPI) for specifying a path, (3) a virtual channel identifier (VCI) for call identifying purposes, (4) payload type (PT), (5) cell loss priority CLP and (6) header error control (HEC).
With the proliferation of ATM networks, it has become essential to be able to access an ATM network from an ATM network and vice versa, and therefore an arrangement through which such mutual access can be performed is necessary. For example, if an STM network is to send data to an ATM network, the time division multiplexed frames of
FIG. 17
must be converted to ATM cells of the kind shown in FIG.
18
. If an ATM network is to send data to an STM network, then ATM cells must be converted to time division multiplexed frames.
Furthermore, it is required that cells output from an STM switch satisfy a 64-Kbps data bandwidth, which is a feature of an STM network. Accordingly, in an ATM network, basically it is required to establish a path based upon a 64-Kbps CBR (Constant Bit Rate), to arrange it so that the CTD (Cell Transfer Delay) in the ATM switch is small and to absorb cell fluctuation.
Further, an important factor in bandwidth control, which is a feature of an ATM switch, is to arrange it so that there is no change even if an STM switch is accommodated. In other words, since QOS (Quality of Service) control of CBR (Constant Bit Rate), ABR (Available Bit Rate) and VBR (Variable Bit Rate) in an ATM switch is performed collectively within the switch, it is better that special processing for an STM switch not be executed. That is, it is so arranged that the bandwidth management algorithm of the ATM switch be employed even if there is a path connection request from the STM switch. If this arrangement is adopted, an advantage gained is that a path connection request from an STM switch can be handled in a manner equivalent to that of a path connection request from another ATM terminal.
The bandwidth used between STM switches varies depending upon traffic. For this reason, it is preferred that the path connection between STM switches be based upon an SVC (Switched Virtual Channel). However, if another ATM terminal accommodated by an ATM switch uses the entire bandwidth in a case where a path is connected by the SVC service, a CBR path will no longer be established for an STM switch. Accordingly, dedicated bandwidth is reserved for the path between STM switches and a PVC (Permanent Virtual Circuit) is established between the STM switches within the limits of the dedicated bandwidth. However, since it wasteful if dedicated bandwidth is not used, it is necessary to reduce such waste by varying dedicated bandwidth dynamically in dependence upon daily traffic.
SUMMARY OF THE INVENTION
Accordingly, a first object of the present invention is to realize a mixed network of ATM and STM networks by providing a converting circuit for converting time division multiplexed frames of an STM network to cells of an ATM network and a converting circuit for converting ATM cells to time division multiplexed frames.
A second object of the present invention is to realize a mixed network of ATM and STM networks in which fluctuation of cells in an ATM network is absorbed and a bit rate of 64 Kbps is satisfied in an ATM network.
A third object of the present invention is to realize a mixed network of ATM and STM networks adapted to minimize waste of bandwidth by varying dedicated bandwidth between STM switches dynamically in dependence upon one day of traffic of an STM switch, and to accept STM calls to the greatest extent possible.
A fourth object of the present invention is to realize a mixed network of ATM and STM networks in which when the total bandwidth of an accepted STM call exceeds the dedicated bandwidth between STM switches, decides whether or not to accept an STM call based upon whether or not any surplus bandwidth remains (i.e., bandwidth other than the dedicated bandwidth).
According to the present invention, the first object is attained by,providing a converting circuit for converting a time division multiplexed frame of an STM network, which frame is the result of time division multiplexing n channels in one frame and one byte of data in each channel, to cells of an ATM network, each cell having a header and an m-byte payload, comprising (1) a time switch memory having, for each destination STM switch, a storage area possessing m consecutive addresses, (2) a control memory for storing a corresponding relationship between time slot numbers in a time division multiplexed frame and addresses of the time switch memory, (3) means for writing data of each time slot in the time division multiplexed frame to a storage area of the time switch memory that is specified by the corresponding relationship stored in the control memory, (4) a buffer memory for storing data read out of the time switch memory, (5) means for reading data out of the time switch memory successively, storing the data in the buffer memory and reading the data out of the buffer memory successively in m-byte units, and (6) cell generating means for generating a cell in which m bytes of consecutive data read out of the buffer memory is adopted as a payload and a header having an identifier conforming to a destination STM switch is added onto the payload. Thus, the converting circuit makes it possible to convert a time division multiplexed frame to cells.
According to the present invention, the first object is attained by providing a converting circuit for converting a time division multiplexed frame of an STM network, which frame is the result of time division multiplexing n channels in one frame and one byte of data in each channel, to cells of an ATM network, each cell having a header and an m-byte payload, comprising (1) a destination memory for storing correspondence between time slot numbers of a time division multiplexed frame and STM switches that are destinations, (2) a destination add-on unit for adding onto data in the time slots of the time division m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Converting circuits and bandwidth management apparatus in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Converting circuits and bandwidth management apparatus in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Converting circuits and bandwidth management apparatus in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3037292

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.