Marine propulsion – Screw propeller – With means effecting or facilitating movement of propulsion...
Reexamination Certificate
2002-06-12
2003-11-18
Avila, Stephen (Department: 3617)
Marine propulsion
Screw propeller
With means effecting or facilitating movement of propulsion...
Reexamination Certificate
active
06648703
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to outboard motors for marine craft. The invention relates, more particularly, to a technique for reducing the envelope dimensions of an outboard motor by providing a collapsible or removable tiller arm structure.
A wide variety of designs have been developed for marine outboard motors. In general, such motors include a primary source of power, an internal combustion engine, coupled to one or more drive props. The motor assembly is designed and packaged to be secured to a watercraft, typically to a transom reinforced to receive the motor. The engine rests above the waterline, while the prop, which is drivingly coupled to the engine via a shaft or similar mechanical transmission linkages, is positioned below the waterline during use. The motor mount provides for both tilt and trim, as well as pivotal movement for positioning the motor so as to produce a resultant force vector needed for steering the watercraft in a desired direction.
The steering of outboard motors may be managed in various ways. For example, remote, and even power-assisted steering systems are available which can be coupled to the motor mounts to provide for steering from a helm either within a cabin and on deck. The motors may also be steered manually via a tiller arm which extends from a front region of the motor and which is grasped by the operator to position the motor in the desired orientation. In many designs, the tiller arm also is equipped with throttle controls, allowing the operator not only to position the motor, but to control the speed of rotation and thereby the velocity of the craft.
Once the tiller arm is secured to an outboard motor, it typically protrudes from the outboard motor substantial distance, allowing for the moment or leverage sufficient for the operator to rotate the motor during use. However, the overall envelope dimension of the motor is substantially increased by the extension of the tiller arm. In certain applications such extension becomes quite problematic. For example, wherein the motor is stored in or removed from relatively close quarters, the extended tiller arm may encumber the motor, or even render its passage through openings difficult or impossible. In certain applications, for example, outboard motors must be available for passage through hatches or similar access routes, requiring envelope dimensions which cannot be obtained through the use of conventional tiller arm securement arrangements.
There is a need, therefore, for an improved outboard motor structure in which a manually steerable tiller arm can be rigidly secured to the motor, but displaced to provide a significantly smaller envelope dimension when needed. There is a particular need for a novel tiller arm arrangement which does not require numerous parts or tools for securement of the tiller arm in an extended position, or for collapsing the tiller arm to a retracted or removed position, and which does not allow various securement parts to be separated from the motor package. Similarly, there is a significant need for a collapsible or removable tiller arm arrangement in an outboard motor that provides for very rapid and straightforward deployment of a removable or collapsible tiller arm and, conversely, for collapsing or removing such tiller arm through a series of simple steps that can be performed in a time-efficient manner.
SUMMARY OF THE INVENTION
The present invention provides a technique for securing a tiller arm assembly to an outboard motor, and for displacing the tiller arm assembly with respect to the motor package designed to respond to such needs. The technique may be employed on a wide range of motor designs, as well as on a range of motor sizes and ratings. In general, the technique provides for a mounting structure which is secured to the outboard motor and receives a tiller arm assembly. The tiller arm assembly is movable or removable with respect to the mounting structure, and is collapsible upon manipulation of a securement piece. The securement piece may be manipulated in an inverse sense for deployment of the tiller arm. Other securement elements may serve to maintain the tiller in the displaced or deployed positions. The securement elements are conveniently attached to the motor package, such as via lanyards.
In one embodiment of the technique, a tiller arm mount is provided on an outboard motor, and a tiller arm assembly bracket is provided from which the tiller arm extends. A securement member or bracket extends from the motor package, and may include a threaded fastener. A mating element interfaces with the securement member to fix the tiller arm assembly in the deployed position. The tiller arm assembly may be pivotable with respect to the support housing. Moreover, the securement member extending from the motor package may extend through the assembly bracket, such that a simple placement of the bracket on the motor package and securement of the interfacing member suffices to place the tiller arm assembly in the deployed position. Thus, for deployment, the tiller arm assembly only needs to be mounted on the interface bracket member, and the securement member fixed in place for attachment in the deployed position.
Other features may include a shift rod, and securement members for the shift rod, where provided. The mounting structure provided on the motor package preferably interfaces with the tiller arm assembly bracket to provide an extremely solid attachment to the motor package, while allowing transmission of moments for steering the motor during use. Lanyards may be provided for all of the attachment elements, as well as for the tiller arm, to secure the various components in place and to prevent them from being separated from the motor package. In addition, where throttle and other controls are provided on the tiller arm, these may be routed through a harness extending on or through the tiller arm, and the tiller arm may be secured to the motor package via the harness.
REFERENCES:
patent: 5046974 (1991-09-01), Griffin, Jr. et al.
patent: 5591055 (1997-01-01), Ambrico et al.
patent: 5669322 (1997-09-01), Huzjak
patent: 6093066 (2000-07-01), Isogawa et al.
Dayenian Paul
McChesney Ric
Avila Stephen
Bombardier Motor Corporation of America
Ziolkowski Patent Solutions Group LLC
LandOfFree
Convertible outboard motor tiller arm and motor... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Convertible outboard motor tiller arm and motor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Convertible outboard motor tiller arm and motor... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3170363