Converter for surface acoustic waves

Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S31300R, C310S31300R, C310S31300R

Reexamination Certificate

active

06577041

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
Applicant claims priority under 35 U.S.C. §119 of German Application No. 199 25 800.7 filed Jun. 3, 1999. Applicant also claims priority under 35 U.S.C. §365 of PCT/DE00/01807 filed May 30, 2000. The international application under PCT article 21(2) was not published in English.
TECHNICAL FIELD
The invention relates to the field of electrical engineering/electronics. Objects that can be applied and are useful are components based on surface acoustic waves such as employed, for example in wide-band band-pass filters and in delay lines.
STATE OF THE ART
Converters for surface acoustic waves are known which are composed of groups of prongs mounted on a piezoelectric substrate. Such groups of prongs each are comprised of at least two prongs, and at least some of the groups of prongs are structured in such a manner that they are different from the other groups of prongs with respect to the wave amplitude they excite.
In a special embodiment (WO 97/10646), interdigital converters designed with a tapering structure are composed of groups of prongs each comprised of three prongs. Two of said prongs form a pair of prongs having no reflection, whereas the third prong of each group is a reflector prong. The spacing between the center lines of the reflector prong and the prong of the pair of prongs located adjacent to said reflector prong typically amounts to 3 p
zg
/8. In this connection, p
zg
represents the length of a group of prongs along a straight line extending parallel with the collector electrodes with a preset spacing from one of said collector electrodes. Each group of prongs consequently has a preferred direction with respect to the generated wave amplitude. A converter structure of this type is therefore referred to as single-phase unidirectional transducer, abbreviated as a SPUDT. If the width of the reflector prong amounts to p
zg
/4 or p
zg
/8, the groups of prongs are referred to as EWC- or DART-cells, respectively. As long as single-phase unidirectional transducers are not designed in the form of tapering structures, they are suited for filters with low insertion damping up to a band-width of about 1%. However, if single-phase unidirectional transducers are combined with the design principle of tapering structures, which is the case in reference [1] cited above, filters with low insertion damping can be realized even up to a bandwidth of up to at least 50%.
So as to be able to adjust the transmission behavior of the described filters in the desired manner, it is necessary to weigh the density of the wave amplitudes generated by the individual groups of prongs. The method of weighing the overlap, which is known from transversal filters, cannot be applied in the present case without serious drawbacks because the amplitudes have to be substantially continuous over the entire aperture of the participating transducers. In another special embodiment, which comes closest to the present invention, said problem has been solved by weighing the density of the gap (H. YATSUDA, IWEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 41, March 1997, pages 453-459 [2]).
Another method for weighing the density of the wave amplitudes generated by groups of prongs in such a manner that such amplitudes are substantially continuous over the entire aperture of the participating transducers, is described in DD 208 512 [3]. The converters employed in said reference are transducers which, together with a transducer with a weighed overlap, form transversal filters, and consequently enhance due to their weighed density the selection of the blockage, as compared to the use of uniform transducers. The groups of prongs of said transducers are arranged parallel with each other and consequently do not form any tapering structure. Each group of prongs is composed of two equally wide prongs. The substantially homogeneous but nonetheless weighed density of the amplitude across the entire aperture is assured in that some of the groups of prongs are subdivided in two subconverters having the same aperture, and in that these subconverters are electrically connected in series. The weighed density factor of one of the structured groups of prongs described in [3] amounts to ½ of the value in relation to an unmodified group of prongs. This is a consequence of the fact that two identical subconverters of a group of prongs are connected in series, which causes the voltage applied to a structured group of prongs to amount to ½ of the amount of the converter voltage.
It is common practice to determine by suitable methods with the help of the filter specification continuous density functions and to subsequently convert such functions into a gap density. The solution [2] has the drawback that the weighed density of the gap, which only permits weighed density factors of equal to 0 or ±1 in some cases, is too rough for permitting a continuous density function to be reproduced with adequate accuracy. The filter so implemented may consequently substantially deviate from the requirements of the filter specification especially in the blocking area even though the application of the continuous, weighed density function, which is of only theoretical significance in the present case, would have assured that the specified requirements are satisfied.
REPRESENTATION OF THE INVENTION
The invention is based on the problem of altering converters for surface acoustic waves of the known type in a manner such that also weighed density factors of other than 0 or ±1 can be realized in spite of the substantially homogeneous profile of the amplitude.
Viewed as converters of the known type are those converters that are composed of groups of prongs mounted on a piezoelectric substrate, where each group of prongs is comprised of at least two prongs and collector electrodes, whereby the arrangement of prongs, in its entirety, is forming a structure tapering in the direction of one of the collector electrodes.
The problem is solved with the converter for surface acoustic waves specified in claim 20. The dependent claims specify variations of the embodiment of the invention.
For solving the problem, some of the groups of prongs, which are designated as structured groups of prongs, are subdivided in the direction of the prongs in a number of subconverters and electrically connected in series, which causes such structured groups of prongs to be different from the remaining groups of prongs with respect to the wave amplitude they excite.
This solution permits combining the advantages offered by tapering converter structures with the application of discontinuous density weighing methods that permit finer, stepped density factors than the weighed density gap. If a structured group of prongs is subdivided into an “N” number of identical subconverters connected in series, the density factor of such a group of prongs is equal to ±1/N. In addition to the density factors 0 and ±1 characteristic of the gap density, the following density factors are consequently adjustable: for example ±1/2 and ±1/3.
The density weighing method described above, which is combined with the tapered alignment of the converter prongs, has little significance for converters without a tapering alignment of the prongs because the weighed overlap density is available in that case, which is normally applied as well. As opposed to the above, the application of the weighed overlap density is not useful with a tapering alignment of the prongs because it would destroy the advantages they offer. Therefore, applicable are only those density weighing methods that modify the electrical voltage on the prongs. The described density weighing method is capable of effecting such a modification. Even though it has little significance for converters without the tapering alignment of the prongs, the claimed combination of features offers in a surprising way an enhanced solution to the density weighing problem in connection with con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Converter for surface acoustic waves does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Converter for surface acoustic waves, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Converter for surface acoustic waves will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3138886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.