Converter for resistive touchscreens

Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S173000, C345S175000, C345S176000, C178S018010, C178S018020, C178S018030, C178S018040, C178S018050, C178S018060, C178S018070

Reexamination Certificate

active

06373475

ABSTRACT:

The present invention relates to touchscreens and other electrographic sensors. An electrographic sensor is a device for determining the co-ordinates of an event, generally in a two-dimensional system, or for inputting such co-ordinates into, for example, a computer.
Such devices in the form of touchscreens have become widely used for inputting information into computers, as a means of operating cash dispensers, sales tills, ticketing machines, computer games and medical and industrial instrumentation. They have many advantages including speed and ease of use, small size, reliability, and accuracy.
A touchscreen will usually be used in conjunction with some form of display such as a cathode ray tube or a liquid crystal screen. The touchscreen is placed over such a display and can indicate to a computer controlling the display which icon or other element of the display has been selected by the user.
Various types of touchscreen have been produced, each with its own advantages and disadvantages. For example, touchscreens may make use of capacitance, surface acoustic waves, or resistance. It is with the last of these possibilities that I am now concerned.
Resistive touchscreens employ transparent layers of a resistive material which come into contact with one another when the screen is touched. This contact completes a circuit, the resistance of which depending on the position where the contact was made. As a result, the magnitude of the output from the touchscreen will depend on the position of the touch.
Touchscreens themselves are used in conjunction with a controller which applies the desired voltages to the various resistive layers, and also passes the output of the screen, generally after digitising it, to the computer or other device to be controlled. Two main types of resistive touchscreen exist, the so-called five-wire and four-wire screens, and each type has hitherto required its own type of controller.
In order to explain this need for a particular type of controller, the two forms of screen will be described in more detail.
Four-wire touchscreens are widely available but they have the disadvantage of a shorter life than five-wire screens. Typically a four-wire screen will be rated to survive one million touches, whereas a five-wire screen will be rated to survive, say, fifteen million or more touches. This difference arises because in the case of a four-wire screen the resistance across the surface of the top, deformable, layer is critical. This resistance will vary slightly as the screen degrades through use. In the case of a five-wire screen the top, deformable, layer must remain conductive, but its precise resistance is not important. As a result, the screen will continue to function unless the screen becomes so damaged that all conductive pathways are lost.
A four-wire screen consists of two transparent, resistive layers separated by a grid of minute dots. The lower layer may be rigid, but the upper layer will be flexible so that when the screen is touched the two layers come into contact between adjacent dots where the screen is touched. The lower layer may be provided with electrodes running along its left and right edges (for example). When a potential difference is applied between those electrodes a voltage gradient will be produced from left to right. A voltage picked up by contacting this layer will therefore have a magnitude that depends on the position of contact. In this example the voltage gradient extends from left to right and therefore the voltage picked up will provide an X-co-ordinate of position. In this example, the upper layer will have electrodes along its top and bottom edges (picture the layers in the vertical plane in front of you), and analogously a voltage difference applied between those electrodes will give rise to an output whose magnitude depends on the Y-co-ordinate of the position of touch. The circuits are completed as follows. When the X-co-ordinate is being measured the left-hand electrode on the lower layer is connected to ground, the right-hand, electrode on the lower layer is connect to (say) 5 V, and the two electrodes of the upper layer are connected together. The voltage between those two electrodes and ground is then measured. When the screen is touched a voltage will be produced that is somewhere between 0 V and 5 V, depending on the X-co-ordinate of the position of touch. It will be appreciated that the voltage will be independent of the Y-co-ordinate of the touch.
The connections are now altered in order to measure the Y-co-ordinate. The left and right-hand electrodes of the lower layer are now connected together, and a potential difference is applied between the two electrodes of the top layer. The output will of course be the voltage appearing at the combined electrodes of the bottom layer.
The device that applies these voltages and that measures the output voltage when the screen is touched is the so-called controller that was referred to above.
The controller has a further function, namely touch detection. It can be seen that power is consumed continuously while the screen and controller are in the above X-measurement and Y-measurement states. In the X-measurement state, for example, a potential difference is maintained across the lower layer and current will flow whether or not the screen is being touched. The waste of power is considerable since for most of the time the screen will not be being touched. In the touch detection state the controller applies, say, 5 V to both the left and right electrodes on the bottom layer, and connects together the two electrodes of the top layer. No current will flow since there is no potential difference across either of the layers. When the screen is touched the controller detects a voltage at the combined electrodes of the top layer. This causes the controller to re-organise its connections to the screen to apply a potential difference between the left and right electrodes on the bottom layer and make the X-measurement as described above. Once this is done the controller re-organises the connections again to apply a potential difference between the electrodes on the top layer to make the Y-measurement. It may repeat these two measurements one or more times to avoid spurious readings, and then it will return to the touch detection state and await a further touch.
The voltage measurements may be made in any suitable way, but generally an analogue-digital converter (ADC) will be used to produce a digitalized output to be fed to the computer to be controlled by the touchscreen.
A five-wire touchscreen operates in a different, and apparently incompatible, way to that described above. The five wires are connected in the following way. Four of them are connected to the four comers of the lower electrode and the fifth wire is connected to an arbitrary position on the upper electrode. In the touch detection state the four wires to the bottom electrode are connect to, say, 5 V. Detection of a voltage at the top layer indicates that the screen has been touched. This then causes the five-wire controller to switch to its X-measurement state as follows. In this state the top and bottom left-hand comers (again imagine the layer in the vertical plane in front of you) are connected to ground, and the top and bottom right-hand corners are connected to, say, 5 V. Depending on the resistance of the lower layer, the field lines across the lower layer will be considerably curved. A specially designed resistive buss may be provided between adjacent pairs of corners of the lower layer in order to make these field lines more rectilinear. This is disclosed in U.S. Pat. No. 4,661,655 (Gibson et al) the disclosure of which is incorporated herein by reference, and excellent touch screens of this type are marketed by Elo TouchSystems Inc. The nature of any such bussing is not important to the present invention and will not therefore be described further. With the touchscreen and controller in the X-measurement state it can be seen that the voltage appearing on the top layer will be related to the X-co-ordina

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Converter for resistive touchscreens does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Converter for resistive touchscreens, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Converter for resistive touchscreens will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2921080

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.