Conversion of wavelet coded formats depending on input and...

Image analysis – Image compression or coding – Adaptive coding

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S240000

Reexamination Certificate

active

06560369

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image processing apparatus and method for encoding/decoding an image, and a storage medium storing this method.
2. Description of the Related Art
In accordance with recent remarkable developments in computers and networks, various kinds of sets of information, such as character data, image data, voice data and the like, are stored within a computer or transmitted between networks.
Among these data, an image, particularly a multivalue image, includes a very large amount of information. Hence, when storing/transmitting an image, the amount of data is very large. Accordingly, when storing/transmitting an image, high-efficiency encoding is adopted in which the amount of data is reduced by removing redundancy of the image, or changing the contents of the image to such a degree that degradation of the picture quality is hardly recognized visually.
A JPEG (Joint Photographic Experts Group) method recommended by ISO (International Organization for Standardization) and ITU-T (International Telecommunication Union—Telecommunication Standardization Sector) is widely used as an internationally standardized high-efficiency encoding method. The JPEG method is based on discrete cosine transform, and has a problem such that block-shaped distortion is generated when increasing the rate of compression.
On the other hand, in apparatuses for inputting or outputting images, a higher rate of compression than in conventional cases is being requested, because higher resolution is required in order to improve the picture quality. In order to deal with such a request, an encoding method utilizing discrete wavelet transform has been proposed as a transform method different from the above-described discrete cosine transform.
The encoding method utilizing discrete wavelet transform has an advantage such that block-shaped distortion causing a problem in the above-described method utilizing discrete cosine transform seldom occurs.
Usually, in the above-described compression encoding method utilizing discrete wavelet transform, processing of transforming an image to be encoded is executed after storing the image in a frame memory for one picture frame, and data for one picture frame after being transformed is stored in the same frame memory or in another frame memory.
The frame memory used in this case can be easily secured in a system based on a computer, but is difficult to secure in a relatively inexpensive peripheral apparatus, such as a digital camera, a scanner, a printer or the like, due to limitations in circuit scale.
In such a case, the present invention is advantageous because an image to be encoded or compressed data of the image is desirably subjected to sequential transform processing (compression encoding) in units smaller than one picture frame, instead of being stored in a frame memory.
In consideration of various types of editing processing to be performed for an image to be encoded or encoded data, it is desirable to divide the image to be encoded or the encoded image into units smaller than one picture frame, particularly, in units of a block, comprising n×m pixels or the like, so as to easily assign a region in two-dimensional directions.
SUMMARY OF THE INVENTION
It is an object of the present invention to solve the above-described problems.
It is another object of the present invention to provide an optimum data arrangement for image data encoded using discrete wavelet transform so as to be efficiently dealt with in each apparatus.
It is still another object of the present invention to provide a method for obtaining, when dealing with image data encoded using discrete wavelet transform, image data having an optimum data arrangement which takes into consideration the capacity of a memory provided in an apparatus dealing with the image data.
It is yet another object of the present invention to provide a method for changing, when dealing with image data encoded using discrete wavelet transform so as to be adapted to an apparatus having a small memory capacity, the arrangement of the image data to an arrangement such that various types of image processing can be easily performed in a desired two-dimensional region.
According to one aspect of the present invention, an image processing apparatus includes input means for inputting first entropy encoded data corresponding to an image. The first entropy encoded data is data produced by entropy encoding a first set of transform coefficients obtained by performing wavelet transform of the image in units of a first type. The apparatus also includes arrangement changing means for entropy decoding the first entropy encoded data to obtain the first set of transform coefficients and for changing the first set of transform coefficients into a second set of transform coefficients corresponding to the result of performing wavelet transform of the image in units of a second type, and entropy encoding means for generating second entropy encoded data by entropy encoding the second set of transform coefficients.
According to another aspect of the present invention, an image processing apparatus includes input means for inputting first entropy encoded data corresponding to an image. The first entropy encoded data is data produced by entropy encoding a first set of transform coefficients obtained by performing wavelet transform of the image in units of a first type. The apparatus also includes arrangement changing means for entropy decoding the first entropy encoded data to obtain the first set of transform coefficients and for changing the first set of transform coefficients into a second set of transform coefficients corresponding to the result of performing wavelet transform of the image in units of a second type, and entropy encoding means for generating second entropy encoded data by entropy encoding the second set of transform coefficients. Furthermore, the apparatus includes an additional arrangement changing means for performing entropy decoding of the second entropy encoded data to obtain the second set of transform coefficients and for changing the second set of transform coefficients into a third set of transfor coefficients corresponding to the result of performing wavelet transform of the image in units of a third type, and additional entropy encoding means for generating third entropy encoded data by entropy encoding the third set of transform coefficients.
According to yet another aspect of the present invention, an image processing method includes an input step of inputting first entropy encoded data corresponding to an image. The first entropy encoded data is data produced by entropy encoding a first set of transform coefficients obtained by performing wavelet transform of the image in units of a first type. The method also includes an arrangement changing step of entropy decoding the first entropy encoded data to obtain the first set of transform coefficients and of changing the first set of transform coefficients into a second set of transform coefficients corresponding to the result of of performing wavelet transform of the image in units of a second type, and an entropy encoding step of generating second entropy encoded data by entropy encoding the second set of transform coefficients.
According to still another aspect of the present invention, in a storage medium storing an image processing program in a state of being readable by a computer, the program includes an input step of inputting first entropy encoded data corresponding to an image. The first entropy encoded data is data produced by entropy encoding a first set of transform coefficients obtained by performing wavelet transform of the image in units of a first type. The program also includes an arrangement changing step of entropy decoding the first entropy encoded data to obtain the first set of transform coefficients and of changing the first set of transform coefficients into a second set of transform coefficients corresponding to the result of performing wavelet transform of the ima

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Conversion of wavelet coded formats depending on input and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Conversion of wavelet coded formats depending on input and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Conversion of wavelet coded formats depending on input and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3017258

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.