Exercise devices – User manipulated force resisting apparatus – component... – Utilizing weight resistance
Reexamination Certificate
1999-12-02
2002-01-08
Yu, Mickey (Department: 3764)
Exercise devices
User manipulated force resisting apparatus, component...
Utilizing weight resistance
C482S108000, C482S121000, C482S139000
Reexamination Certificate
active
06336894
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
Not applicable
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to a method of resisting, human motion with two or more vectors of resistance converging upon a common unit of attachment, as well as equipment used to resist movement of the users muscular-skeletal system, particularly such equipment utilizing convergent force vectors.
BACKGROUND OF THE INVENTION
2. Description of Prior Art
Home and commercial gyms, fitness studios, wellness centers, athletic facilities, corporate health facilities rehabilitation and occupational facilities commonly supply resistance training equipment or more commonly called exercise equipment. This equipment, regardless of its location or structure, is generally used to oppose muscular contraction or rather provide resistance to a users movement whereby placing stress on the skeletal muscular system.
Therefore, muscles are stressed by moving body parts in contact with the resistance equipment having a magnitude selected by the user. This movement through a given range of motion usually follows a cycle often referred to as a exercise cycle that is repeated a number of times composing a set.
This equipment comes in many forms, shapes, and compositions. The following are examples of the most commonly encountered, or conventional equipment: Barbells, Dumbbells, plastic Tubing, Coiled Springs, Selectable-Weight-Stack Cable-Pulley-Systems, Cam-Regulated Selectable-Weight-Stack Cable-Pulley-Systems (also called variable resistance equipment), Hydraulic, and electronic Isokinetic equipment. These pieces of equipment have unique characteristics pertaining to their composition, shape, and function, but all of the above provide only one (1) vector of resistance to be manipulated.
The utilization of conventional equipment is limited to one vector of resistance or one action line and magnitude of resistance. Most equipment offers the option of altering, the magnitude of resistance but not the action line or vector of that resistance and therefore is limited in ability to function as a tool for resisting human motion. This may contribute to the reason users of the conventional equipment prefer to utilize a combination of equipment when applying force against muscular contraction. Unknowing to most, the reason for this is mainly attributed to the fact that using various exercise instruments will position body segments differently or otherwise varying equipment with different force vectors can challenge the body segments, further or in a safer manner, when in the presence of an injury.
Generally, users of this equipment rarely take the time to learn the fundamental characteristics of each piece of equipment, therefor unknowingly use equipment in a haphazard or contraindicated manner. Accompanying the ignorance of conventional resistance training, as related to skeletal and muscular adaptations, is an overall lack of understanding or misunderstanding how resisted motion affects the human body. Especially, on how body structures and articulations are impacted when introduced to force vectors, particularly the direction or action line and magnitude of such vectors. Moreover, many users learn vicariously or just imitated what is viewed causing a “monkey see monkey do phenomenon”. Most often the monkey being viewed or demonstrating a particular exercise has little, if any, sound education in the body of knowledge pertaining to exercise, fitness, therapy, sports conditioning etc. Thus, the perpetual use of conventional equipment by users uneducated in a body of knowledge concerning resistance applied to human motion has numerous consequences. Due to the physiological responses of resistance training and potential side effects of improper positioning of resistance force vectors, understanding and education is as crucial here as it would be for a medical professional prescribing medications unknowing of the drugs origin or mechanism of action.
Further describing as an exercise cycle is performed through a range of motion (ROM) the magnitude of force placed in opposition to a specified muscle group, particularly its action line is unique to each type of equipment listed above. With this in mind, it can be understood that with one vector of resistance, the user will have to produce a specific sequence of events involving an array of structures specific to the direction of force or action line of resistance imposed by the equipment. Because of this, as muscles perform motion against each of the conventional forms of resistance, a unique bio-mechanical and physiological response occurs when presented with this exercise stimulus. In theory, with respect to utilization of above equipment for various purposes such as therapy, fitness, health and sports conditioning etc. each piece is limited in use by its specific nature and therefor able to elicit only a select few, if more than one, bio-mechanical and physiological responses. The response or change will depend upon how the user manipulates the equipment such as in the form or path of motion (POM) and the magnitude of resistance. Additionally, the response or change will depend on the users ROM and speed of movement (inertia), usually in terms of degrees per second in which movement occurs, as well as the total time force is applied against movement. Ultimately, each exercise instrument by its own is very specific thus having limitations in use. With this in mind, it becomes apparent that the internal stabilizing structures of specific movements will also be bound to the specific exercises performed and the limitations of conventional equipment.
It is believed that the magnitude of a force vector placed on a given muscle at a given time changes between and among equipment within the users prescribed ROM can be dangerous or counterproductive. This occurs when a given muscle's ability to create force is exorbitantly disproportionate to the opposing force vectors magnitude. The deleterious effects of over powering (resisting) muscular contraction can lead to serious injury of the involved musculature, joint, and bones or those stabilizing or supporting the primary action. Additionally, during the exercise cycle the muscles are capable of resistance force differently at various joint angles. Typically, at the joint angle, were the moment arm and resistance is greatest within a ROM, the largest number of motor units will be active. Generally speaking, with the previous particulars, cross bridging of the muscles filaments will also be greatest at the joint angle when the most number of motor units are active.
Furthermore, due to improper exercise intensities the use of conventional equipment often imposes counterproductive trauma upon involved articulations or joints and their respective bony levers. Moreover, this can be partially owed to the fact that to increase the potential likely-hood of enhanced physiological response most often the magnitude of resistance is increased in an effort to improve the stimulus to the muscular skeletal system. Typically this occurs when the muscle groups involved at specific points within the ROM feel unchallenged or conditioning levels have hit a plateau whereby the exerciser, desiring greater conditioning levels, increases the magnitude of resistance. This exemplifies the limitations of conventional equipment, particularly the absence of additional force vectors. In this situation at specific points within the ROM of an exercise cycle the resistance fails to challenge the muscle(s) of interest therefor the user, using equipment with only one force vector to manipulate, has to increases the magnitude of resistance in order to further challenge the muscular-skeletal system. As a result, the increased magnitude of force at certain positions throughout the range of motion can cause temporary or permanent damage to the structure or tissue of and around a given articulation, whether having a preexisting injury or being of sound structure prior to the e
Hwang Victor K.
Yu Mickey
LandOfFree
Convergent vector resistance device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Convergent vector resistance device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Convergent vector resistance device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2843975