Convergence adjusting method, signal generating apparatus,...

Television – Video display – Projection device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S746000

Reexamination Certificate

active

06507374

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a convergence adjusting method needed where a plurality of projection display units, which project respective images onto a projection screen, are used to overlap the projected images on the projection screen to provide a single projected image at a higher level of brightness. This invention further relates to signal generating apparatus and projection display units.
2. Description of the Prior Art
A method for the providing of a large-scale screen image has been well known in the art, in which an optical image according to a video signal is formed on a light valve. Thereafter, the optical image thus formed is illuminated with light to be projected enlargedly onto a large-scale projection screen by a projection lens. In recent years, projection display units using liquid-crystal panels as light valves have attracted considerable attention. For example, Ono and others disclose a liquid-crystal projection display unit (Japanese Patent Laid-Open No. S62-133424), to provide a projected image of high quality by employing three active matrix liquid-crystal panels for three kinds of colors (red , green, and blue), each pixel thereof being provided with a TFT acting as a switching element. As a liquid-crystal panel material, twisted nematic (TN) liquid-crystal has been used widely owing to its ability to provide images of high quality. Because of improvements of an aperture ratio in the liquid-crystal panel and because of the development of small-sized lamps of high luminance, a typical latest projection display unit is able to provide much improved optical output than previously.
Additionally, a method for use by a display unit installed at an exhibition hall or the like has been known, in which projected images are overlapped or superposed on one another on a projection screen using a plurality of projection display units, for providing a single projected image at a much higher level of brightness. Hereinafter, such a method will be called the “stack projection” technique. For instance, Noda proposes a technique for performing a stack projection operation with a plurality of liquid-crystal projection display units (Japanese Patent Laid-Open No. H05-107639). In addition, stack projection is employed where images which are thrown for right and left human eyes are projected using two projection display units for achieving a large-scale screen stereoscopic display.
However, in the case a plurality of projection display units are used to carry out stack projection of images, it is required that some adjustment work be made at the job site such as an exhibition hall for overlapping a plurality of projected images on one another on the projection screen.
Accordingly, in a conventional projection-type displaying technique, two projection display units are fed the same video signal to project identical crosshatch patterns onto a projection screen, wherein inter-set convergence adjustment is carried out by moving a projection display unit by a very slight amount or by moving a projection lens by a very slight amount, to reduce a degree of misregistration between the two crosshatch patterns over the entire projection screen.
Conventionally, convergence adjustment has been carried out in the following two ways.
In the first convergence adjusting method, one projection display unit displays a red crosshatch pattern and the other projection display unit displays a green crosshatch pattern, wherein inter-set convergence adjustment is performed to reduce a degree of misregistration between the red crosshatch pattern and the green crosshatch pattern. Next, the two projection display units display respective crosshatch patterns of white lines to confirm a resulting convergence state. If the convergence state thus confirmed is found to be unsatisfactory, another inter-set convergence adjustment operation is performed by redisplaying a red and a green crosshatch pattern. These operations are repeatedly performed until the point the misregistration between the crosshatch patterns displayed on the projection screen cannot be reduced to a further degree.
In the second convergence adjusting method, inter-set convergence adjustment is roughly performed using a red and a green crosshatch pattern. This is followed by the displaying of crosshatch patterns of white lines by the two projection display units. Performing adjustment with the aid of the displayed white-line crosshatch patterns, a final fine convergence adjustment process is carried out.
In each of the first and second convergence adjusting methods, crosshatch patterns of white lines are displayed to confirm a convergence state for the following reason. If crosshatch patterns of red, green, and blue, each projected from a single projection display unit, are precisely superposed upon one another, the projecting of any one of red, green, and blue crosshatch patterns may be considered equivalent to the projecting of a white-line crosshatch pattern. However, practically, there is produced slight misconvergence between projected red, green, and blue images due to the system assembly error and the magnification chromatic aberration. To cope with such misconvergence, it is necessary that the adjustment previously described is performed.
The first convergence adjusting method enables the operator to easily determine, based on the difference in line color between projected crosshatch patterns, which part of which projection display unit should be adjusted. However, the first convergence adjusting method is troublesome to carry out and such adjustment is very time consuming.
On the other hand, in the second convergence adjusting method, the two projection display units each display a crosshatch pattern of white lines in the fine adjustment phase, which makes it possible to detect misregistration between the crosshatch patterns. However, the problem of the second convergence adjusting method is that it is impossible to determine which part of which projection display unit should be adjusted. This may lead to another problem that a portion required to be adjusted is moved opposite. Such misadjustment may result in producing a poor inter-set convergence adjustment result in comparison with the adjustment result prior to the final fine adjustment. If such an undesired situation takes place, it takes quite a long time to perform necessary adjustment operations.
As described above, conventional inter-set convergence adjusting operations are very troublesome to perform and time consuming. This problem becomes more and more serious as the number of projection display units increases.
There is another type of projection display unit, namely a CRT projection display unit employing a CRT in which an image displayed on the CRT is enlargedly projected with a projection lens. Even when using a plurality of CRT projection display units to perform a stack projection operation, the same problem as above arises, in other words inter-set convergence adjustment becomes considerably troublesome to perform.
SUMMARY OF THE INVENTION
Bearing in mind the above-described problems with the prior art projection display units, the present invention was made. Accordingly, an object of the present invention is to provide an improved convergence adjusting method capable of facilitating convergence adjustment in a stack projection operation.
It is another object of the present invention to provide a projection display unit and a signal generating apparatus for facilitating, based on the convergence adjusting method of the present invention, convergence adjustment work in a stack projection operation.
The present invention is a convergence adjusting method which is employed where a plurality of projection display units are used to project identical images for mutual superposition, said convergence adjusting method comprising the steps of:
(a) causing a first one of said plurality of projection display units that serves as a reference to continuously project a first pattern,
(b) causing a second one of said

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Convergence adjusting method, signal generating apparatus,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Convergence adjusting method, signal generating apparatus,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Convergence adjusting method, signal generating apparatus,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3054013

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.