Illumination – Supports – Special switch operator
Reexamination Certificate
1998-03-30
2002-06-11
Sember, Thomas M. (Department: 2875)
Illumination
Supports
Special switch operator
C362S399000, C362S804000
Reexamination Certificate
active
06402351
ABSTRACT:
BACKGROUND AND SUMMARY OF THE INVENTION
The present invention relates to a surgical light apparatus. More particularly, the present invention relates to improved controls for the operation of a surgical light apparatus for generating light at a surgical site.
Surgical lights used in hospital operating rooms to illuminate surgical sites on patients are known. Many surgical lights are suspended from a ceiling of a hospital room by arm mechanisms which are movable to permit adjustment of the location of the surgical light relative to the patient. It is common for surgical lights to be placed in a position behind a surgeon such that the surgeon's head is located between the surgical light and the surgical site. Surgical lights having a dome-shaped reflector to reflect light toward the surgical site around the head of the surgeon are known. It is desirable for surgical lights to provide a high illuminance level, to shine light deeply into a patient's body cavity, and to resist shadowing caused by interference from personnel and instruments.
Surgical lights typically include a housing surrounding a reflector and a lens coupled to the housing and facing toward the surgical site. A handle typically extends down from a center portion of the lens to permit the surgeon to adjust the position of the light during the surgical procedure. The surgeon can also change a pattern size of reflected light generated by the surgical light by rotating the handle to move the light source toward and away from the reflector.
At least the handle and the lens of the surgical light are located in a sterile field prepared for the surgical procedure. In other words, a bottom portion of the surgical light including the lens and the handle must be sterilized prior to a surgical procedure by wiping, cleaning or other means. Often a separate, disposable latex cover or shield is placed over the handle prior to the surgical procedure to provide a sterile field on the handle.
Intensity controls for conventional surgical lights are located on wall boxes spaced apart from the surgical light or on a portion of the surgical light outside of the sterile field. The surgical light apparatus of the present invention advantageously locates all of the light controls inside the sterile field. This allows the surgeon or other sterile personnel in the surgical suite to adjust the position of the surgical light, to adjust the focus of the light by turning the handle, and also to operate the on/off and intensity or brightness controls for the light from within the sterile field during a surgical procedure.
According to one aspect of the present invention, a surgical light apparatus includes a lighthead having a sterile field thereon, a bulb located within the lighthead, a controller coupled to the bulb, and an actuator coupled to the controller to adjust an intensity of light emitted from the bulb. The actuator is located in the sterile field on the lighthead.
The lighthead illustratively includes a reflector, a lens, and a handle located adjacent the lens. In the illustrated embodiment, the actuator is located on the handle. The handle is illustratively configured to extend outwardly from a center portion of the lens. The actuator illustratively may be a push button actuator, rocker switch, or a squeezable actuator.
In the illustrated embodiment, the actuator is configured to engage a switch coupled to the controller. The controller is illustratively configured to turn the bulb on and off and to adjust the intensity level of the bulb between a minimum intensity level setting (L
1
) and a maximum intensity level setting (Ln) in a predetermined sequence based on each switch actuation by the actuator.
A panel located adjacent the sterile handle, in the sterile field, provides an intensity level display. The display also includes a relamp indicator light which notifies the user that the main light bulb has failed and that a backup or auxiliary bulb is currently in use. In addition, the display provides a standby light to indicate that power is supplied to the light. The surgical light apparatus of the present invention provides duplicate sets of displays on opposite sides of the surgical light so that the surgeon can view one of the displays regardless of the orientation of the surgeon relative to the light.
According to another aspect of the present invention, a surgical light apparatus includes a lighthead including a bulb, a lens, a controller for turning the bulb on and off and for adjusting an intensity level of light emitted from the bulb, a first display, and second display spaced apart from the first display. The first display and second display are each coupled to the controller and are each configured to display an indication of the intensity level of the bulb.
The illustrated first and second displays are spaced apart by about 180°. The first and second displays illustratively each include a plurality of LEDs. Each LED indicates a different light intensity level for the bulb.
According to yet another aspect of the present invention, a surgical light apparatus includes a lighthead having a reflector, a lens coupled to the reflector, a plurality of tubes mounted in an interior region of the lighthead between the reflector and the lens, a lamp assembly including a support and at least one bulb, and a plurality of rods configured to engage the support. Each rod is configured to extend through the support and into a corresponding tube. The rods include at least one threaded portion configured to secure the lamp assembly within the interior region. The rods are slidable relative to the tubes upon disengagement of the threaded portion of the rods to permit the lamp assembly to move out of the interior region of the lighthead. The rods each are formed to include a stop to prevent separation of the lamp assembly from the lighthead. In the illustrated embodiment, the stops are threaded stops so that the rods can be removed upon rotation of the rods to permit separation of the lamp assembly from the lighthead.
The sterile handle of the present invention is removable for cleaning or autoclaving. The actuation button is illustratively integrated into the end of the sterile handle, but the electrical switch resides inside the light core to facilitate cleaning.
The sterile handle controls of the present invention, located in the sterile field, provide the surgeon or other sterile personnel full control over the surgical light without the need to access distant controls located on a portion of the surgical light outside the sterile field or located on a wall in the surgical suite. The sterile handle controls can be used alone and do not require wall mounted controls and related installation and wiring costs.
However, the surgical light apparatus of the present invention also provides a wall mounted control panel coupled to the surgical light apparatus for use by non-sterile personnel in the surgical suite. The wall control panel can accommodate a plurality of light systems, typically up to three lights per panel. The wall control panel functions in a manner identical to the sterile handle controls. The wall control panel also includes displays for light intensity, relamp indicator, and standby mode the same as those located on the surgical light. The sterile handle controls and the wall control panel use the same controller located above the surgical light.
The surgical light apparatus of the present invention is also designed to facilitate maintaining a sterile field adjacent the handle. In particular, the handle is configured to facilitate installation of a standard disposable sterile handle cover or shield. The handle is configured with an air passage to permit air which would otherwise be trapped between the shield and the handle to exit through the handle and into an interior region of the surgical light apparatus.
According to a further aspect of the present invention, a surgical light apparatus includes a reflector, a lens coupled to the reflector, a bulb located between the reflector and the lens, and a handle located
Borders Richard L.
Bulko John M.
Coon Dennis C.
Krahe Ronald P.
Barnes & Thornburg
Hill-Rom Services Inc.
Sember Thomas M.
LandOfFree
Controls for a surgical light apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Controls for a surgical light apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controls for a surgical light apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2979914