Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
2001-02-23
2004-02-03
Jastrzab, Jeffrey R. (Department: 3762)
Surgery
Diagnostic testing
Cardiovascular
C482S009000
Reexamination Certificate
active
06687535
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to exercise and sports, particularly to applications in which recovery of a person from a fitness exercise performed by him/her is controlled.
2. Brief Description of the Related Art
Recovery after exercising is important both to metabolism and muscle care. Stress pain resulting from exercising can be reduced considerably by a well-performed recovery exercise. In that case recovery is achieved in shorter time and the capability of the muscles and the system to perform the next exercise improves considerably. The most important function of the recovery exercise is to remove any lactic acid, i.e. lactate, accumulated in the body quickly and efficiently so that the lactate does not cause pain and post-exercise stress in the muscles. For this reason, the recovery exercise has to be performed at a stress level which prevents build-up of additional lactate, but enables effective removal of lactate from the body. Thus the recovery exercise is performed below the anaerobic threshold.
Nowadays various instructions and rules are used in sports coaching and training to keep recovery exercise at a certain adequate level for a predetermined time. For example, the exercising person may be told to recover from exercising by walking for 10 minutes or by keeping the heart rate at 120 beats/minute for 10 minutes.
The prior art method of recovering from a fitness exercise has considerable disadvantages. It is clear that the above-mentioned instructions are very general and by no means optimal for achieving as efficient recovery as possible. The above-mentioned instructions take the characteristics of an exerciser into account only indirectly, e.g. a coach may give different instructions for performing recovery exercise to athletes with different fitness levels.
SUMMARY OF THE INVENTION
The object of the invention is to provide an improved method of controlling a fitness exercise. This is achieved with the method to be described in the following. The method concerns controlling recovery of a person from a fitness exercised performed by him/her. The method comprises controlling a recovery exercise following the fitness exercise so that it is performed at a heart rate level below the threshold value of heart rate, heart rate variation being higher than a preset threshold value of heart rate variation at heart rate levels lower than the-threshold value of heart rate.
The invention also relates to a heart rate measuring arrangement. The heart rate measuring arrangement comprises measuring means for obtaining heart rate information, forming means for forming control information from the heart rate information obtained by measuring to control the recovery exercise, display means for presenting the formed control information.
The preferred embodiments of the invention are disclosed in the dependent claims.
The invention relates to a method and apparatus for controlling recovery of a person from a fitness exercise performed by him/her. In this description the fitness exercise refers to a physical exercise which is at least partly performed at a workload level exceeding the anaerobic level, in which case lactate is accumulated in the muscles of the person's body. The recovery exercise means the exercise phase that follows the actual fitness exercise or competitive exercise which is mainly performed at a workload level below the anaerobic level. Controlling means control information provided e.g. by a heart rate monitor, such as the heart rate level, the heart rate limits within which the recovery exercise should be performed, and the time preferably used for the recovery exercise.
In a preferred embodiment of the invention, an anaerobic threshold value, i.e. the threshold value of heart rate, is found on the basis of changes in heart rate variation. Here heart rate variation means temporal variations in heart beats around the expected moments at which the heart should beat. In a preferred embodiment, the variation is calculated as moving standard deviation, but it, can also be calculated by another prior art mathematical method, e.g. by a method which utilizes the distribution function between the heart rate and the heart rate variation. As a function of heart rate, the heart rate variation naturally decreases as the heart rate, i.e. the heart beat frequency, increases.
FIG. 1
illustrates variation as a function
100
of heart rate, i.e. the x axis
104
shows the heart rate as per cent of the maximum heart rate and the y axis
102
shows standard deviation as milliseconds around the expected moment at which the heart should beat.
FIG. 1
illustrates dependency between the heart rate variation and the heart rate, which applies to the majority of people. When the heart rate level is e.g. 40% of the maximum heart rate, the heart rate variation is between 15 to 25 milliseconds. The maximum heart rate means the heart rate value that can be calculated e.g. by the formula (220−age), in which case the maximum heart rate of a 40-year old person is 180. The maximum heart rate can also be measured at the maximal workload or determined from the person's physiological properties using a neural network, for instance. It can be seen from
FIG. 1
that as the heart rate level approaches the maximum heart rate, the heart rate variation decreases considerably. The angular point of heart rate variation, i.e. the change point
106
, is achieved at a heart rate level which is usually about 62 to 65% of the maximum heart rate, but may also vary in a wider range, e.g. 55 to 70% of the maximum heart rate. The change point
106
of heart rate variation is connected to the anaerobic limit point
106
b
of energy metabolism. It can be seen from
FIG. 1
that the anaerobic limit point
106
b
is at a slightly higher heart rate level, i.e. 15 to 25 beats higher, than the change point
106
of heart rate variation. At heart rate levels above the anaerobic limit point
106
b
exercise is anaerobic, whereas at heart rate levels below the limit point exercise is aerobic. The intersection point of the change point
106
is about 4 milliseconds at the y axis, but may vary e.g. from 3 to 5 milliseconds.
In this description the fitness exercise refers to a physical exercise which is at least partly performed at a workload level exceeding the anaerobic limit, in which case lactate accumulates in the muscles of the person's body. Lactate concentration can be estimated for a given period, e.g. a few hours before and after the fitness exercise, and thus the invention is not limited to the actual performance of the fitness exercise. A fitness exercise can be divided e.g. into the following phases: warm-up, active phase, recovery phase, in which case the fitness exercise is preceded and followed by a rest. Different phases can be defined and distinguished from one another e.g. on the basis of heart rate levels and/or workload levels. Then the recovery phase, for example, can be defined as an exercise level where the heart rate level drops from 130 beats/minute to a rest level of 70 beats/minute. The recovery phase is considered to begin when the heart rate level is below the limit of the active phase, i.e. 130 beats/minute, for two minutes, for instance.
In a preferred embodiment of the invention the exercising person monitors his/her heart rate at least at the end of the fitness exercise. At the beginning of the recovery exercise, the exerciser starts to walk, for example, so that the heart rate drops to a heart rate value below the change point of heart rate variation. For the recovery to be maximally efficient, it should be performed as close to the change point as possible, i.e. at a heart rate which is about 55 to 60% of the maximum heart rate.
In another preferred embodiment of the invention, the physical condition of the exercising person is also taken into account in the calculation of the change point of heart rate variation. Physical condition can be defined e.g. as the maximal oxygen uptake, which can be determined e.g. by measuring the
Hautala Arto
Heikkilä Ilkka
Mäkikallio Timo
Nissilä Seppo
Tulppo Mikko
Hoffman & Baron LLP
Jastrzab Jeffrey R.
Oropeza Frances P.
Polar Electro Oy
LandOfFree
Controlling of fitness exercise does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Controlling of fitness exercise, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlling of fitness exercise will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3311718