Supports: cabinet structure – With movable components – Horizontally movable
Reexamination Certificate
2003-11-07
2004-11-23
Hansen, James O. (Department: 3637)
Supports: cabinet structure
With movable components
Horizontally movable
C312S334110
Reexamination Certificate
active
06820954
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to slide assemblies and, more particularly, to quick disconnect-type slide assemblies.
2. Description of the Related Art
For convenience and to conserve floor space, computer servers for high-capacity computer systems are often mounted in rack structures. Typically, several computer servers are mounted in each rack structure. Each server is typically mounted on a pair of slide assemblies to allow the server to slide in and out of the rack structure for convenient access to the server.
Each slide assembly comprises two or more slide segments. In slide assemblies comprising only two slide segments, a first or outer slide segment is mounted to a frame of the rack structure, and a second or inner slide segment is mounted to the server. The outer slide segment defines a channel. The inner slide segment is movable in the channel to extend or retract the slide assembly. A bearing assembly is movably positioned in the channel to facilitate sliding movement of the inner slide segment with respect to the outer slide segment.
In quick disconnect slide assemblies, the inner slide segment can be entirely removed from the channel and detached from the outer slide segment. This allows convenient removal of the computer server from the server rack structure for repair or replacement of the computer server. The inner slide segment remains attached to the computer server when the server is removed from the rack.
To replace the computer server in the server rack, a rear end of the inner slide segment must be guided back into the channel of the outer slide segment. Because each server is typically supported by a pair of slide assemblies, the ends of the inner slide segments of both slide assemblies must be guided into the channels of the outer slide segments substantially in unison. This often proves difficult since the computer servers are typically heavy and awkward to handle.
If the inner slide segment is not properly aligned in the channel, the end of the inner slide segment can interfere with the bearing assembly. As the inner slide segment is moved rearwardly in the channel, the bearing assembly is moved with it. When the bearing assembly reaches the end of the channel, further rearward movement of the bearing assembly is prevented. This makes further rearward movement of the inner slide segment difficult. The inner slide segment, along with the attached computer server, may have to be moved forwardly and realigned in the channel before the slide assembly can be fully retracted. In addition to being inconvenient, damage to the bearing assembly or other components of the slide assembly can result if the inner slide segment is forcibly retracted.
In most quick disconnect-type slide assemblies, a lock is provided to prevent the unintentional detachment of the inner slide segment from the outer slide segment when the slide assembly is extended. However, while it is generally desirable for the lock to engage when the slide assembly is fully extended, it is generally undesirable and inconvenient for the lock to engage as the inner slide segment and attached computer server are first installed in the server rack.
SUMMARY OF THE INVENTION
The slide assembly of the present invention solves the problems of the prior art by incorporating a controller. The controller comprises an actuator and a latch. The slide assembly includes a lock to prevent the unintentional detachment of the inner slide segment from the outer slide segment when the slide assembly is extended. The actuator allows the lock to engage when the slide assembly is extended, but does not allow the lock to engage as the inner slide segment is inserted and retracted into the channel when the computer server is first installed or reinstalled in the server rack.
The latch serves to retain the bearing assembly near the forward end of the channel as the end of the inner slide segment is inserted into the channel. This makes it easier to guide the end of the inner slide segment past the bearing assembly as the inner slide segment is inserted and retracted into the channel when the computer server is first installed or reinstalled in the server rack.
In accordance with one aspect of the present invention, a slide assembly is provided comprising a first slide segment and a second slide segment. The first slide segment comprises an upper wall, a lower wall, and a side wall extending between the upper and lower walls. The side wall and the upper and lower walls define a channel. The second slide segment is movable in the channel to extend or retract the slide assembly.
A bearing assembly is provided in the channel to facilitate sliding movement of the second slide segment with respect to the first slide segment. The bearing assembly comprises a number of ball bearings and a bearing retainer. The bearing retainer has an upper retainer portion located adjacent the upper wall, a lower retainer portion located adjacent the lower wall, and a side portion located adjacent the side wall and extending between the upper and lower retainer portions. The side portion has an opening provided therein.
The slide assembly includes a latch having a locking portion. The latch is movable between a first position wherein the locking portion extends into the opening to limit movement of the bearing assembly in the channel, and a second position wherein the locking portion does not extend into the opening and the bearing assembly is allowed a greater freedom of movement in the channel.
In accordance with another aspect of the present invention, a slide assembly is provided comprising a first slide segment and a second slide segment. The first slide segment comprises an upper wall, a lower wall, and a side wall extending between the upper and lower walls. The side wall and the upper and lower walls define a channel. The second slide segment is movable in the channel to extend or retract the slide assembly. A bearing assembly is located in the channel to facilitate sliding movement of the second slide segment with respect to the first slide segment.
The slide assembly includes a latch. The latch is movable between a first position wherein the latch extends into the channel to limit movement of the bearing assembly, and a second position wherein the bearing assembly is allowed a greater freedom of movement in the channel.
In accordance with another aspect of the present invention, a slide assembly is provided comprising a first slide segment, a second slide segment, and a third slide segment. The first slide segment comprises an upper wall, a lower wall, and a side wall extending between the upper and lower walls. The side wall and the upper and lower walls define a first channel. The second slide segment is movable in the first channel to extend or retract the slide assembly.
The second slide segment comprises an upper wall, a lower wall, and a side wall extending between the upper and lower walls. The side wall has an opening formed therein and includes an engagement surface. The side wall and the upper and lower walls define a second channel. The third slide segment is movable in the second channel to extend or retract the slide assembly.
The third slide segment comprises an upper wall, a lower wall, and a side wall extending between the upper and lower walls. A lock arm extends from the side wall of the third slide segment towards the side wall of the second slide segment. The lock arm is engageable with the engagement surface to limit movement of the third slide segment with respect to the second slide segment.
An actuator extends through the opening in the side wall of the second slide segment towards the lock arm. The side wall of the first slide segment contacts the actuator when the slide assembly is retracted, causing the actuator to actuate the lock arm and thereby disengage the engagement surface from the lock arm.
In accordance with yet another aspect of the present invention, a slide assembly is provided comprising a first slide segment, a second slide segment, and a third
Alba Ted D.
Judge Ronald J.
Lyons Adam M.
Hansen James O.
Jonathan Manufacturing Corporation
Knobbe Martens Olson & Bear LLP
LandOfFree
Controller for a quick disconnect slide assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Controller for a quick disconnect slide assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controller for a quick disconnect slide assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3336289