Controller, cabin pressure control system and method of...

Ventilation – Vehicle – Pressure regulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C454S074000

Reexamination Certificate

active

06676504

ABSTRACT:

The present invention relates to a controller for a cabin pressure control system for controlling actual pressure inside a cabin, preferably an aircraft cabin, comprising said controller being connected to a first sensor for measuring actual cabin pressure, an input unit for receiving information about atmosphere pressure or for receiving information about a pressure differential between actual cabin pressure and atmosphere pressure and information about additional critical parameters, a channel with a control for calculating an output signal based on the measured actual cabin pressure and the information received by the input unit.
Additionally, the present invention relates to a cabin pressure control system, especially for use in an aircraft, comprising a first pressure sensor for measuring the actual pressure inside the cabin, a controller with an input unit for receiving information about pressure of an atmosphere or for receiving information about a pressure differential between actual cabin pressure and atmosphere pressure and information about additional critical parameters, said controller comprising a channel for calculating a control cabin pressure based on the pressure differential between the cabin pressure and the atmosphere pressure and additional critical parameters and for generating an associated channel output signal in order to keep the actual cabin pressure near the control cabin pressure in a closed loop control, at least one outflow valve with an associated actuator actuatable by an output signal from said controller.
In yet another aspect, the present invention is directed to a method of controlling the actual pressure inside a cabin, especially in an aircraft cabin, comprising the steps of measuring the actual pressure inside said cabin, measuring the actual pressure in a surrounding atmosphere, calculating the pressure differential between said actual pressure and said atmosphere pressure, or, as alternative, measuring the pressure differential between said actual pressure and an atmosphere pressure, calculating a control cabin pressure based on the pressure differential between the cabin pressure and the atmosphere pressure and additional critical parameters, and generating a first output signal depending on the calculated control pressure in order to keep the actual cabin pressure near the control cabin pressure in a closed loop control.
The pressure differential between the actual cabin pressure and atmosphere pressure may be calculated by measuring both pressures and subtracting them from each other. Alternatively, said pressure differential may be measured directly by a suitable sensor. It is of course possible to use information from other aircraft systems, too. The pressure differential is referred to as positive if cabin pressure is higher than atmosphere pressure and as negative if otherwise.
A controller, a cabin pressure control system and a method of controlling the actual pressure inside a cabin are known from EP 0 625 463 B1, issued to the applicant of the present application. Said prior art document discloses a cabin pressure control system comprising a controller, one outflow valve and two safety valves. The controller calculates an output signal based on the pressure differential between the cabin and the atmosphere and additional critical parameters like final cruise flight level. The outflow valve is actuated in order to keep the actual cabin pressure near a predetermined control cabin pressure. The known system provides a closed loop control.
The system must fulfill two requirements. First, the pressure differential must not exceed a certain threshold because otherwise the aircraft fuselage may be damaged or destroyed. Second, the operator usually sets a certain pressure rate of change which must be maintained. Huge change rates in cabin pressure are harmful for the crew and the passengers and therefore not acceptable.
In case of malfunction of the outflow valve or the controller, the pressure differential between the cabin pressure and the atmosphere pressure may exceed a predetermined threshold. In case of a positive pressure differential the safety valves open mechanically based on said pressure differential. Said opening prevents damage or destruction of the cabin due to the pressure differential. In order to compensate a negative pressure differential, the known system additionally provides a negative relief valve allowing entry of air in the cabin.
The known cabin pressure control system is reliable. However, it requires the use of one outflow valve and two safety valves to prevent overpressure, leading to an increased weight which is most undesirable in aircrafts. Two independent overpressure relief valves are required by aviation regulations.
Accordingly, it is an object of the present invention to provide a controller and a cabin pressure control system allowing effective pressure control and preventing undue high cabin pressure with reduced weight. It is a further object of the present invention to provide a method of controlling the actual pressure inside a cabin, especially an aircraft cabin which is effective and reliable.
To achieve said objects, the invention proposes a controller of the above mentioned kind which characterized in that said controller comprises a pressure differential safety function calculating an output signal based alone on the pressure differential between actual cabin pressure and atmosphere pressure, said safety function being connectable to a second sensor for measuring actual cabin pressure, and in that said safety function comprises a control for comparing the two output signals and selecting the output signal generated by the safety function if the output signal from said channel control is found inaccurate.
The cabin pressure control system is characterized by the features that it that comprises a second sensor for measuring actual cabin pressure, that said controller comprises a pressure differential safety function calculating an output signal depending only on the pressure differential between actual cabin pressure and atmosphere pressure, which is connected to said second sensor, and that said safety function comprises a control for comparing the two output signals and selecting the output signal generated by the safety function if the output signal from said channel control is found inaccurate.
The method in accordance with the invention comprises the additional steps of generating a second output signal depending only on the pressure differential between the actual cabin pressure and atmosphere pressure, said pressure differential being obtained independent from the pressure differential for generating said first output signal, and comparing said two output signals and selecting the second output signal if said first output signal is found inaccurate.
The invention provides a pressure differential safety function which controls the output signal of the channel. If the channel output signal is found inaccurate, the output signal of the safety function is used. The channel output signal is deemed inaccurate if it would cause a pressure differential above a certain predetermined threshold or a too large rate of change in cabin pressure. The input information for the safety function is retrieved independent from the input information for the channel, using different sensors. Malfunction in a channel sensor will have no results on the safety function output signal
The channel requires relatively sophisticated components and software, while the safety function may be implemented using simple components without software. Therefore, the safety function is much more reliable and fail-safe than the channel and provides the necessary operation of the outflow valve.
The invention allows elimination of one of the previously used safety valves. It is now possible to control the actual cabin pressure with one safety valve less than with the known system. The aviaton regulatory requirement of two independent overpressure relief valves is fulfilled by adding the safety function to the channel contro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Controller, cabin pressure control system and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Controller, cabin pressure control system and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controller, cabin pressure control system and method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3208142

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.