Controlled tether arrangement for an airbag

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06719320

ABSTRACT:

FIELD OF INVENTION
The present invention relates to airbag door constructions for vehicles and, more particularly, to hinging and retention of the door through the use of a tether design that controllably tensions upon airbag deployment.
BACKGROUND OF THE INVENTION
Nearly all motor vehicles today are provided with inflatable restraint systems to protect both the driver and passengers in the event of a collision. The airbag system for the passenger side of the vehicle generally includes an inflator and reaction canister located behind the instrument panel and the airbag inflates through an opening in the panel. That opening may be covered by a rectangular shaped door that is flush mounted in the opening and is moved out of the way on a hinge or tethers by the deploying airbag. In newer applications, the door that covers the opening may be “invisible” to the occupants of the vehicle, that is, hidden behind a surface covering of skin and foam which is pre-weakened by a groove formed on the backside of the skin layer to allow a predictable tearing of the skin. A separate door substrate is located beneath the skin and foam layers and is hinged or tethered to the instrument panel or canister to control door opening.
Vehicles such as small trucks, SUV's and small to medium sized cars often will use a hard panel construction, i.e., without a separate soft skin and padded foam layer, to reduce cost. In these cases, a separate airbag door, instrument panel and door chute may be assembled over the canister. To control the path of the airbag as it expands, a deployment chute transitions the space between the canister where the bag is stored and the back of the airbag door to assure that the bag does not expand in an undesirable direction. Use of a hard door separate from the remainder of the instrument panel may allow replacement of only the door portion after a low speed deployment, as the remainder of the instrument panel may not be damaged. In still other applications, the hard instrument panel and door may be formed of unitary construction with a pre-weakened seam of reduced cross-section formed on the underside of the panel, outlining the periphery of the airbag door. Hinges, tethers, reinforcements and chutes are then post-attached to the molded hard panel. This is a preferred construction as aesthetics are enhanced (no visible seam) and cost is reduced (a single molding rather than multiple components assembled together).
Additionally, it is known in the art to use both hinges and tethers to control the opening and travel of the door or door substrate. In U.S. Pat. Nos. 5,685,930; 5,564,731; 5,804,121; 5,902,428 and 5,975,563 to Gallagher, et al. and commonly assigned to the assignee of the present invention and included herein by reference, a molded motor vehicle instrument panel made of thermoplastic material having an integral airbag deployment door for a passenger side airbag that is defined by a tear seam and normally retained by an integral flexible mounting/hinge flange is disclosed.
In U.S. Pat. Nos. 5,685,930 and 5,902,428 the door is retained by a supplemental tethering hinge which is formed separately from the panel and attached by welding or an adhesive. The supplemental tethering hinge contains a loop or fold
63
as slack to let the door separate and move controllably away from the instrument panel to allow the bag to expand through the opening.
In U.S. Pat. Nos. 5,564,731 and 5,975,563 the flexible tethering hinge is described as being of sheet material, thermosetting, thermoplastic, metal mesh or woven fabric of plastic or natural fibers and attached by mechanical fasteners or hot staked bosses on the inner side of the door portion.
U.S. Pat. Nos. 5,975,563 and 5,804,121 are directed at an integral mounting hinge/flange on which is formed a bonded layer of second plastic material on one side of the flange and on the inner side of a potentially frangible portion of the door. The second plastic material has the physical characteristic of remaining ductile at low temperatures at which the instrument panel plastic material becomes brittle and as a result, the bonded layer forms a tether to retain the door in a controllable manner as it separates from the instrument panel when the airbag is deployed.
In U.S. Pat. No. 5,765,862 to Autoliv ASP, Inc. an inflatable airbag assembly mounted in a rectangular opening in the vehicle instrument panel is disclosed having bracket means, a plurality of thermoplastic resin fasteners and an integrally formed tether support bar
18
for a tether
20
that is connected between the door
14
and a bracket
22
, on airbag module
16
.
U.S. Pat. No. 5,533,746 to Morton International recites a cover for covering an opening in a panel adjacent to an airbag inflation system comprising a tether attachment element having a first portion sandwiched between said inner (metal) and outer substrates and second portion exposed for attachment to a tether and at least one tether having a loop at an outer end portion of said tether attachment element and having an inner end portion adapted for fixed attachment to limit the amount of movement of said cover away from the opening deployment of the airbag inflation system. The tether may comprise a loop and the attachment element may be an elongated metal rod. The attachment element (rod) has a series of U-shapes that extend between the door inner and outer back to a flexible tether that is looped in its undeployed condition.
U.S. Pat. No. 5,332,257, also to Morton International, discloses a tether having first and second ends, the first end being secured to said module cover (on the B-side), and the second end forming a loop, a retainer rod extending through said loop and a channel enclosing said retainer rod and loop in a fixed position to anchor said tether.
U.S. Pat. No. 5,211,421 to G. M., discloses a tether that is on the A-side of an airbag door, between substrate and foam layer which is fastened to a bracket on the canister.
All of these references use numerous components in an attempt to accomplish their objectives resulting in added material and manufacturing costs. Separate door, chute, tether, fastener and reinforcement materials are combined with a myriad of attachment processes to form an assembly that may be installed in the instrument panel.
It is therefore an object of this invention to provide a tether for an airbag door that has a controlled slack such that the slack tensions, in a controlled manner, to retain the airbag door which has been integrally formed in the hard instrument panel upon airbag deployment.
More specifically, it is a further object to provide a tether for an airbag door that is secured between the airbag door and a deployment chute wherein the airbag door is integrally formed in a hard plastic molded instrument panel and wherein a deployment chute and a door reaction plate are welded to the underside of the instrument panel in the area of the airbag door.
It is a still further object of this invention to provide a tether that attaches indirectly to an airbag door by attaching to a reaction plate which is fastened to the airbag door, thus providing the result that the fasteners for the tether will not be evident on the show surface of the airbag door.
These and other objects, advantages and features of the present invention will become more apparent form the following description and accompanying drawings.
SUMMARY OF THE INVENTION
An airbag door construction for airbag deployment comprising a hard instrument panel having an integrally formed airbag door, said airbag door having an area of reduced cross-section outlining at least a portion of the periphery thereof. A reaction plate is attached to the underside of said panel at said airbag door location. A deployment chute is attached to the underside of said panel, said deployment chute attached to said panel in at least a portion of an area lying just outside of said area of reduced cross-section. A tether assembly is included wherein said assembly comprises a tether having two ends wherein the first end engages sa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Controlled tether arrangement for an airbag does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Controlled tether arrangement for an airbag, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlled tether arrangement for an airbag will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3224312

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.