Controlled shutdown of a fuel cell

Chemistry: electrical current producing apparatus – product – and – Having magnetic field feature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S010000, C429S006000

Reexamination Certificate

active

06376112

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a fuel cell system and more particularly to a system having a plurality of cells which consume an H
2
-rich gas to produce power.
BACKGROUND OF THE INVENTION
Fuel cells have been used as a power source in many applications. For example, fuel cells have been proposed for use in electrical vehicular power plants to replace internal combustion engines. In proton exchange membrane (PEM) type fuel cells, hydrogen is supplied to the anode of the fuel cell and oxygen is supplied as the oxidant to the cathode. PEM fuel cells include a membrane electrode assembly (MEA) comprising a thin, proton transmissive, non-electrically conductive solid polymer electrolyte membrane having the anode catalyst on one of its faces and the cathode catalyst on the opposite face. The MEA is sandwiched between a pair of electrically conductive elements which (1) serve as current collectors for the anode and cathode, and (2) contain appropriate channels and/or openings therein for distributing the fuel cell's gaseous reactants over the surfaces of the respective anode and cathode catalysts. The term fuel cell is typically used to refer to either a single cell or a plurality of cells (stack) depending on the context. A plurality of individual cells are commonly bundled together to form a fuel cell stack and are commonly arranged in series. Each cell within the stack comprises the membrane electrode assembly (MEA) described earlier, and each such MEA provides its increment of voltage. A group of adjacent cells within the stack is referred to as a cluster. Typical arrangements of multiple cells in a stack are described in U.S. Pat. No. 5,763,113, assigned to General Motors Corporation.
In PEM fuel cells, hydrogen (H
2
) is the anode reactant (i.e., fuel) and oxygen is the cathode reactant (i.e., oxidant). The oxygen can be either a pure form (O
2
), or air (a mixture of O
2
and N
2
), though in this specification the term “air” is used to refer to both O
2
and O
2
in combination with other gases. The solid polymer electrolytes are typically made from ion exchange resins such as perfluoronated sulfonic acid. The anode/cathode typically comprises finely divided catalytic particles, which are often supported on carbon particles, and mixed with a proton conductive resin. The catalytic particles are typically costly precious metal particles. These membrane electrode assemblies are relatively expensive to manufacture and require certain conditions, including proper water management and humidification, and control of catalyst fouling constituents such as carbon monoxide (CO), for effective operation.
For vehicular applications, it is desirable to use a liquid fuel such as an alcohol (e.g., methanol or ethanol), or hydrocarbons (e.g., gasoline) as the source of hydrogen for the fuel cell. Such liquid fuels for the vehicle are easy to store onboard and there is a nationwide infrastructure for supplying liquid fuels. However, such fuels must be dissociated to release the hydrogen content thereof for fueling the fuel cell. The dissociation reaction is accomplished within a chemical fuel processor or reformer. The fuel processor contains one or more reactors wherein the fuel reacts with steam and sometimes air, to yield a reformate gas comprising primarily hydrogen and carbon dioxide. For example, in the steam methanol reformation process, methanol and water (as steam) are ideally reacted to generate hydrogen and carbon dioxide. In reality, carbon monoxide and water are also produced. In a gasoline reformation process, steam, air and gasoline are reacted in a fuel processor which contains two sections. One is primarily a partial oxidation reactor (POX) and the other is primarily a steam reformer (SR). The fuel processor produces hydrogen, carbon dioxide, carbon monoxide and water. Downstream reactors may include a water/gas shift (WGS) and preferential oxidizer (PROX) reactors. In the PROX, carbon dioxide (CO
2
) is produced from carbon monoxide (CO) using oxygen from air as an oxidant. Here, control of air feed is important to selectively oxidize CO to CO
2
.
Fuel cell systems which process a hydrocarbon fuel to produce a hydrogen-rich reformate for consumption by PEM fuel cells are known and are described in co-pending U.S. patent application Ser. Nos. 08/975,422 and 08/980,087, filed in November, 1997, and U.S. Ser. No. 09/187,125, filed in November, 1998, and each assigned to General Motors Corporation, assignee of the present invention; and in International Application Publication Number WO 98/08771, published Mar. 5, 1998. A typical PEM fuel cell and its membrane electrode assembly (MEA) are described in U.S. Pat. Nos. 5,272,017 and 5,316,871, issued respectively Dec. 21, 1993 and May 31, 1994, and assigned to General Motors Corporation.
Efficient operation of a fuel cell system depends on the ability to effectively control system shutdown, particularly in a rapid shutdown mode. One particularly important system component in this regard is the air compressor, which delivers air/O
2
to the fuel cell system. Typically, the compressor operates at approximately 200° C. outlet temperature. This typical outlet temperature is very close to that which would degrade the compressor, that is, a temperature of approximately 210° C. A compressor overtemperature/overpressure condition can degrade the compressor, as well as sensitive downstream system components. However, while turning off the air compressor can alleviate the undesirable effects of an overtemperature/overpressure condition, the lack of air to the system can degrade other system components, including the fuel-cell, combustor, and reformer/fuel processor, all of which rely on airflow during shutdown. For instance, air flow to the combustor must be maintained during shutdown to prevent overheating as the combustor burns off residual gases. Accordingly, it is desirable to provide a method and apparatus by which a compressor overtemperature/overpressure condition can be alleviated during rapid shutdown without depriving other system components of necessary airflow.
SUMMARY OF THE INVENTION
In one aspect, the invention provides a venting methodology and system for relieving fuel cell system overpressure, particularly during rapid system shutdown, while maintaining airflow through the system. In a further aspect, there is provided a preferred valving and control arrangement for carrying out the inventive methodology.
In one arrangement there is provided a fuel cell system comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor, and at least one valve for selectively venting combustor exhaust from the system when the fuel processor is reforming. The invention further provides selectively venting combustor exhaust via the at least one valve when the fuel processor is not reforming and when the air compressor is operating outside of one or more predetermined parameters.
According to one feature of this methodology, the operating condition of the fuel processor (i.e., whether it is operating to produce a reformate, such as H
2
gas) is determined, the condition of at least one operating parameter of the air compressor is determined, and combustor exhaust is selectively vented via the at least one valve if the fuel processor is not reforming and the at least one operating parameter of the air compressor is determined to exceed one or more predetermined values.
According to another feature of the invention, the step of determining the condition of at least one operating parameter of the air compressor comprises determining temperature and/or pressure conditions proximate the compressor outlet. According to this feature, combustor exhaust is selectively vented if the air compressor is operating above predetermined temperature and/or pressure values.
According to another inventive feature, the step of selectively venting combustor exhaust further comprises opening the at least one valve for a predeter

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Controlled shutdown of a fuel cell does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Controlled shutdown of a fuel cell, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlled shutdown of a fuel cell will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2918866

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.