Electricity: conductors and insulators – Conduits – cables or conductors – Preformed panel circuit arrangement
Reexamination Certificate
1998-07-24
2002-05-14
Paladini, Albert W. (Department: 2841)
Electricity: conductors and insulators
Conduits, cables or conductors
Preformed panel circuit arrangement
C361S808000
Reexamination Certificate
active
06388203
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of microelectronic devices, and more particularly. to solder bumps for microelectronic devices.
BACKGROUND OF THE INVENTION
High performance microelectronic devices often use solder balls or solder bumps for electrical and mechanical interconnection to other microelectronic devices. For example, a very large scale integration (VLSI) chip may be electrically connected to a circuit board or other next level packaging substrate using solder balls or solder bumps. This connection technology is also referred to as “Controlled Collapse Chip Connection—C4” or “flip-chip” technology, and will be referred to herein as “solder bumps”.
A significant advance in this technology is disclosed in U.S. Pat. No. 5,162,257 to Yung entitled “Solder Bump Fabrication Method” and assigned to the assignee of the present invention. In this patent, an under bump metallurgy is formed on the microelectronic substrate including contact pads, and solder bumps are formed on the under bump metallurgy opposite the contact pads. The under bump metallurgy between the solder bumps and the contact pads is converted to an intermetallic which is resistant to etchants used to etch the under bump metallurgy between solder bumps. Accordingly, the base of the solder bumps is preserved.
In many circumstances, it may be desired to provide a solder bump on the substrate at a location remote from the contact pad and also form an electrical connection between the contact pad and the solder bump. For example, a microelectronic substrate may be initially designed for wire bonding with the contact pads arranged around the outer edge of the substrate. At a later time it may be desired to use the microelectronic substrate in an application requiring solder bumps to be placed in the interior of the substrate. In order to achieve the placement of a solder bump on the interior of the substrate away from the respective contact pad, an interconnection or redistribution routing conductor may be necessary.
U.S. Pat. No. 5,327,013 to Moore et al. entitled “Solder Bumping of Integrated Circuit Die” discloses a method for forming a redistribution routing conductor and solder bump on an integrated circuit die. This method includes forming a terminal of an electrically conductive, solder-wettable composite material. The terminal includes a bond pad overlying the passivation layer remote from a metal contact and a runner that extends from the pad to the metal contact. A body of solder is reflowed onto the bond pad to form a bump bonded to the pad and electrically coupled through the runner.
In this method, however, the solder bump is formed by pressing a microsphere of a solder alloy onto the bond pad. In addition, the spread of solder along the runner during reflow is limited. In the illustrated embodiment, a solder stop formed of a polymeric solder resist material is applied to the runner to confine the solder to the bond pad.
In many circumstances, it is desirable to form relatively tall solder bumps. For example, taller solder bumps provide a larger opening between a microelectronic chip and substrate in a flip-chip module, which facilitates improved cleaning and underfill. In addition, it is generally excepted that taller solder bumps are more reliable because the straining per unit length is proportionally reduced with the increase in bump height.
A known technique for increasing solder bump height is to increase the volume solder with the same diameter solder pad. However, this technique typically requires more space on the substrate for plating or depositing the additional solder, and/or requires additional process steps. As a consequence, the benefit of increasing the bump height is often offset, at least in part, by the increase in surface area required for a single bump, and or, the additional cost associated with providing additional solder. Other methods of decreasing the strain per unit length in the solder includes casting pillars, posts, or beams of high melting point solder and attaching these to the semiconductor using lower temperture solders.
Notwithstanding the above mentioned references, there continues to exist a need in the art for solder bump structures that are relatively tall, do not require additional surface area, and can be fabricated efficiently and at a reduced cost.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide an improved solder bump structure.
It is another object of the present invention to provide solder bump structure with a solder redistribution reservoir for increasing the volume, and thus the height, of the solder bump.
It is another object of the present invention to provide an improved vacuum in a sealed chamber including a microelectronic device.
These and other objects are provided, according to the present invention, by a controlled-shaped solder reservoir which provides additional solder to a bump in the reflow step for increasing the volume of solder forming the solder bump. The controlled shaped reservoirs can be shaped and sized to provide predetermined amounts of solder to the solder bump. Thus, the height of the resulting solder bump can be predetermined, not to mention that the height is greater than that of similar solder bumps without solder redistribution reservoirs because of the additional solder volume added by the reservoirs. To accommodate the stringent space requirement in many microelectronic chip designs, the solder reservoir can be shaped to take a minimum amount of space. Consequently, the solder bumps may have increased height without adding to the space requirements of the solder bump, or without increasing the cost.
Other advantages of the solder structures formed in accordance with the present invention include an increase opening or gap in a flip-chip structure because of the taller solder bumps. This allows for more efficient cleaning of flux and other residues, and more efficient underfilling. The taller solder bumps can also be utilized in conjunction with electrical contact bumps that do not have solder reservoirs so that the contact bumps are elongated by the relatively larger bumps formed with the assistance of the additional solder from the reservoirs. Consequently, the contact bumps are more reliable because the strain is distributed over a greater length (i.e., height) because of the relatively larger volume bumps. Yet another advantage is that the relatively taller solder bumps can be utilized to increase the volume, and thus reduce the pressure, of a sealed chamber in a MEMS vacuum package. This enables a lower pressure vacuum environment to the generated without the equipment typically needed to generate such low pressures vacuums. Further, a single masking step can be used to define both the solder bump structure, including the solder redistribution reservoir, and the under bump metallurgy layer.
In accordance with one embodiment of the present invention, a solder structure on a microelectronic substrate comprises a solder reservoir portion and a solder bump portion, and wherein the solder reservoir portion is non-linear in shape. The solder reservoir portion may wrap around the solder bump portion in order to take up less space. The solder reservoir portion may also wrap substantially around the solder bump portion to substantially envelop the solder bump portion. Alternatively, the solder reservoir portion may spiral partially around or symmetrically wrap around the solder bump portion. In yet another alternative, the solder reservoir portion extends from a proximate end adjacent the solder bump portion to a distal end and partially warps around the solder bump portion with a progressively narrowing width from the proximate end to the distal end. In addition, the solder structure may comprise a plurality of solder reservoir portions extending from the solder bump portion. Preferably, the radially extending solder reservoirs are of substantially equal length, though the reservoirs can be of varying lengths.
Further, the solder reservoir portion may be shaped
Magill Paul A.
Rinne Glenn A.
Norris Jeremy
Paladini Albert W.
Unitive International Limited
LandOfFree
Controlled-shaped solder reservoirs for increasing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Controlled-shaped solder reservoirs for increasing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlled-shaped solder reservoirs for increasing the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2821493