Card – picture – or sign exhibiting – Photographic transparency viewer – e.g. – x-ray viewer
Reexamination Certificate
2001-03-27
2003-10-07
Morano, S. Joseph (Department: 3617)
Card, picture, or sign exhibiting
Photographic transparency viewer, e.g., x-ray viewer
Reexamination Certificate
active
06629378
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to devices for assisting in the reading of x-ray films and more particularly to controlling the lighting used to assist in the reading of x-ray films.
BACKGROUND OF THE INVENTION
Devices for assisting in the reading of x-rays have undergone an evolution over the history of the use of x-rays. Initially x-rays were simply held up to the light as the doctor or the technician read them. This procedure had its problems and drawbacks. The hand held x-rays tended to not be steady and the light tended to be erratic and uneven. Later, light boxes were developed light boxes consisted of a frame that held a frosted glass with a lamp disposed beneath the frosted glass. The x-ray was placed on the frosted glass where it lay in a stable position. The light box overcame the mentioned drawbacks of the hand held x-ray, but never-the-less had its own problems and drawbacks. The light box emitted a bright light in the areas around the perimeter of the x-ray and a lesser light showed through the x-ray itself. This bright light tended to partially desensitize the sight of the doctor or radiologist reviewing the x-ray.
Still later, automation came about, including carriages for transporting a series of x-rays passed a reviewing station including a light box. The x-ray transporting carriages had their own problems. One of the problems with the transporting carriages included the partial desensitizing problem previously confronted in the light boxes. Later modifications included the addition of manual or semi-automatic mechanical shutters to mask unwanted light. Such shutters are driven by hand or motorized. The present invention overcomes the partial sight desensitizing problem by only providing lighting behind the x-ray film.
The device used in many radiology departments of medical facilities is a motorized film alternator, commonly referred to as a “Rolloscope™” or “motorized viewer.” This device transports radiology films for the radiologist to view and use in the generation of a report on the radiology findings. These x-ray films may consist of various widths and heights that are transported on a mechanism such as a transparent belt or web and may consist of multiple rows of x-rays, one row located adjacent another. Each row may be referred to as a deck. The area behind the belt or transport mechanism is lighted to allow the radiologist to see the image on the x-ray film. The light consists of a series of flourescent lamps covered by a white plastic panel that provides a diffused white light source. In order for the radiologist to see small findings on the film, masking may be used. The facility places black films around the area to be viewed. The black film is used as a light blocking device. Alternatively, the alternator companies offer mechanical shutters to mask e.g., block unwanted light around these films to increase viewing sensitivity. This masking is typically manual or semiautomatic and is a time consuming process, requiring careful arrangement of black film to create a desired pattern.
SUMMARY OF THE INVENTION
The present invention includes a device for assisting in the reading of radiology films, e.g., x-ray films including mechanism for transporting a plurality of x-rays to and from an x-ray reading station. The transporting mechanism may include a web and mechanism for securing a plurality of x-ray films to the web. The plurality of x-ray films may be spaced one from another along the web. The device has mechanism for controlling the movement of the web to sequentially transport the x-ray films to the reading station. The device includes mechanism for sensing the web and overlying x-ray film to identify the location of each x-ray film. The sensing mechanism is disposed upstream of the x-ray reading station. The device has mechanism for activating light sources behind the x-ray film and avoiding activating light sources behind the web portions not having overlying x-ray film. The light activating mechanism is disposed at the x-ray reading station whereby light is passed through the x-ray film and light is not passed through the web not having overlying x-ray film.
The present invention provides an area of light source that automatically conforms to dimensions of the area behind the x-ray films. The present invention includes mechanism for transporting and supporting x-ray films for reading by a doctor or radiologist. The device includes mechanism for transporting a plurality of x-ray films to and from an x-ray film reading station. The transporting mechanism includes an elongated transparent film, e.g., web for securing a plurality of x-ray films to the web. The plurality of x-ray films may be spaced one from another along the web or the x-ray films may abut one another. The mechanism for securing the x-ray films to the web may be a pocket formed along an edge of the web. Alternatively, the securing mechanism may be a clip that fastens the x-ray film to the web. The transporting mechanism e.g., web, may carry one, two or more rows of x-ray film sheets and a plurality of x-ray film sheets may be viewed simultaneously at the reading station.
The present device includes mechanism for controlling the movement of the web carrying the x-ray film to sequentially transport the individual x-ray films to the reading station. The present device includes mechanism for sensing the location of the x-ray film with respect to the web. The sensing mechanism may include a plurality of photoelectric cells to sense the presence and location of the x-ray film. The sensing mechanism is disposed upstream of the x-ray reading station. The sensing mechanism may sense the vertical dimension, as well as, the horizontal dimension of each of the x-ray films, e.g. ten inch x-ray film as distinct from twelve inch x-ray film as distinct from a seventeen inch x-ray film. The sensing mechanism also may sense the leading edge of a sheet of x-ray film and the trailing edge of the sheet of x-ray film. The information obtained by the sensing mechanism is in data form and stored for use as the web is moving to the reading station. The data then directs the light bank to illuminate only the areas which are beneath the x-ray film.
The reading station of the present device has a plurality of light sources positioned to selectively pass light through the x-ray film at the reading station to illuminate the x-ray film, without illuminating the areas of the web around the periphery of the sheets of x-ray film. The device has mechanism controlled by the sensing mechanism to activate only the light sources that pass light through the x-ray film and avoid activating the light sources that would pass light through the web that does not have overlying x-ray film. Thus light is only passed through the x-ray film and not through the layer that is solely web. This selective lighting prevents the partial desensitizing of the sight of the doctor or radiologist reading the x-rays.
The sensing mechanism reads the dimensions and location of the x-ray film, converting such information into digital data. The digital data is stored until the x-ray film reaches the reading station. The digital data then activates the light sources behind the x-ray film. The sensing mechanism serves a further purpose in that it senses the linear movement of the web so as to determine the timing of when the x-ray film is located in the reading station.
The sensing mechanism senses both the vertical dimension of the x-ray and the horizontal dimension of the x-ray. In other words the sensing mechanism recognizes the compete shadow of the x-ray film. The sensing mechanism may sense the density of the x-ray film and subsequently increase or decrease the intensity of the light directed through various areas of the x-ray to provide the desired level of light transmitted through the x-ray films.
As the x-ray films pass through the film detection scanners the location, size and if desired shape of the x-rays films are scanned into digital form, entered into a computer shift register in digital data form and synchroniz
Friederichs N Paul
Friederichs Norman P
Morano S. Joseph
Wright Andrew
LandOfFree
Controlled light source device for reading x-rays does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Controlled light source device for reading x-rays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlled light source device for reading x-rays will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3128403