Chemistry: electrical and wave energy – Apparatus – Electrophoretic or electro-osmotic apparatus
Reexamination Certificate
1999-04-06
2001-05-29
Phasge, Abun S. (Department: 1741)
Chemistry: electrical and wave energy
Apparatus
Electrophoretic or electro-osmotic apparatus
C204S601000, C156S500000
Reexamination Certificate
active
06238538
ABSTRACT:
BACKGROUND OF THE INVENTION
There has recently been an increasing interest in the application of manufacturing techniques common to the electronics industry, such as photolithography, wet chemical etching, etc., to the microfabrication of fluidic devices for use in obtaining chemical and biochemical information.
The manufacture of fluidic devices in solid substrates, e.g., silicon, glass, etc., was described as early as 1979, with the disclosure of the Stanford Gas Chromatograph (discussed in Manz et al., Avd. in Chromatog. (1993) 33:1-66, citing Terry et al., IEEE Trans. Electron. Devices (1979) ED-26:1880). These fabrication technologies have since been applied to the production of more complex devices for a wider variety of applications.
To date, the most prominent use of this technology has been in the area of capillary electrophoresis (CE). Capillary electrophoresis typically involves the injection of a macromolecule containing sample, e.g., nucleic acids or proteins, into one end of a thin capillary. A potential is then applied along the length of the capillary to electrophoretically draw the materials contained within the sample through the channel. The macromolecules present in the sample then separate from each other based upon differences in their electrophoretic mobility within the capillary. Such differences in electrophoretic mobility typically result from differences in the charge and/or size of a compound. Other factors can also affect the electrophoretic mobility of a given compound, such as interactions between the compound and the capillary walls, interactions with other compounds, conformation of the compound, and the like.
Capillary electrophoresis methods have traditionally employed fused silica capillaries for the performance of these electrophoretic separations. In more recent applications, this fused silica capillary has been replaced by an etched channel in a solid planar substrate, e.g., a glass or silica slide or substrate. A covering layer or substrate provides the last wall of the capillary.
Early discussions of the use of this planar substrate technology for fabrication of such devices are provided in Manz et al., Trends in Anal. Chem. (1990) 10(5):144-149 and Manz et al., Adv. in Chromatog. (1993) 33:1-66, which describe the fabrication of fluidic devices and particularly capillary electrophoresis devices, in silicon and glass substrates.
Although generally concerned with the movement of material in small scale channels, as the name implies, capillary electrophoresis methods employ electrophoresis to affect that material movement, e.g., the movement of charged species when subjected to an electric field. While providing significant improvements in the separation of materials, these capillary electrophoresis methods cannot be used in the direction of bulk materials or fluids within microscale systems. In particular, because electrophoresis is the force which drives the movement of materials in CE systems, species within the material to be moved which have different electrophoretic mobilities will move at different rates. This results in a separation of the constituent elements of the material. While this typically is not a problem in CE applications, where separation is the ultimate goal, where the goal is the bulk transport of fluid borne materials from one location to another, electrophoretic separation of the constituent elements of that material can create numerous problems. Such problems include excessive dilution of materials in order to ensure complete transport of all materials, biasing of a transported material in favor if faster electrophoresing species and against slower or even oppositely electrophoresing species.
While mechanical fluid direction systems have been discussed for moving and directing fluids within microscale devices, e.g., utilizing external pressures or internal microfabricated pumps and valves, these methods generally require the use of costly microfabrication methods, and/or bulky and expensive equipment external to the microfluidic systems. Accordingly, it would generally be desirable to produce a microscale fluidic device that can be easily and cheaply manufactured. The present invention meets these and other needs.
SUMMARY OF THE INVENTION
It is a general object of the invention to provide microfluidic devices for the performance of chemical and biochemical analyses, syntheses and detection. The devices of the invention combine precise fluidic control systems with microfabricated polymeric substrates to provide accurate, low cost, miniaturized analytical devices that have broad applications in the fields of chemistry, biochemistry, biotechnology, molecular biology and numerous other fields.
In a first aspect, the present invention provides a microfluidic system which includes a microfluidic device. The device comprises a body that is substantially fabricated from a polymeric material. The body includes at least two intersecting channels disposed therein, where the interior surfaces of these channels have a surface potential associated therewith, which is capable of supporting sufficient electroosmotic mobility of a fluid disposed within the channels. At least one of the two intersecting channels has at least one cross sectional dimension in the range of from about 0.1 &mgr;m to about 500 &mgr;m. The device also includes at least first, second and third ports disposed at termini of the first channel and at least one terminus of the second channel, and these ports are in electrical contact with fluid in the channels. The system also includes an electrical control system for concomitantly applying a voltage at the three ports, to selectively direct flow of a fluid within the intersecting channels by electroosmotic flow.
The present invention also provides a method of fabricating microfluidic devices for use with an electroosmotic fluid direction system. The method comprises molding a polymeric material to form a substrate that has at least one surface, and at least first and second intersecting channels disposed in that surface. Each of the at least first and second intersecting channels has an interior surface which has a surface potential associated therewith, which is capable of supporting sufficient electroosmotic flow of a fluid in those channels. Again, at least one of the intersecting channels has at least one cross-sectional dimension in the range of from about 0.1 &mgr;m to about 500 &mgr;m. A cover layer is overlaid on the surface of the substrate, whereby the cover layer encloses the intersecting channels. Together, the substrate and cover layer will also comprise at least three ports disposed therein, each of the at least three ports being in fluid communication with first and second termini of said first channel and at least one terminus of the second channel.
In a related aspect, the present invention also provides a method for directing movement of a fluid within a microfluidic device. The method comprises providing a microfluidic device having at least first and second intersecting channels disposed therein. Each of the first and second intersecting channels has a fluid disposed therein, wherein the at least first and second channels have interior surfaces having a surface potential associated therewith, which is capable of supporting sufficient electroosmotic mobility of the fluid disposed in those channels. The device also includes at least first, second, third and fourth ports disposed in the substrate, wherein the first and second ports are in fluid communication with the first channel on different sides of the intersection of the first channel with the second channel, and the third and fourth ports are in fluid communication with the second channel on different sides of the intersection of the second channel with the first channel. A voltage gradient is then applied between at least two of the first, second, third and fourth ports to affect movement of said fluid in at least one of the first and second intersecting channels.
REFERENCES:
patent: 4390403 (1983-06-01), Batchelder
patent: 4675300 (
Bousse Luc
Chow Calvin Y. H.
Knapp Michael R.
Parce John Wallace
Caliper Technologies Corp.
Landry Stacy
Law Offices of Jonathan Alan Quine
Murphy Matthew B.
Phasge Abun S.
LandOfFree
Controlled fluid transport in microfabricated polymeric... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Controlled fluid transport in microfabricated polymeric..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlled fluid transport in microfabricated polymeric... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2558732