Controlled curvature of stressed micro-structures

Optical: systems and elements – Mirror – Including specified control or retention of the shape of a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S224200, C359S225100, C359S883000

Reexamination Certificate

active

06712480

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to controlling curvature in micro-structures. More particularly, the present invention relates to controlling curvature in micro-structures used in micro-electro mechanical machines.
BACKGROUND OF THE INVENTION
A number of micro-machines utilize movable cantilever or ribbon structures. Typically the cantilever or ribbon structures are extremely thin; on the order of hundreds or thousands of Angstroms. These thin micro-structures can experience a high degree of mechanical stress, either during fabrication or during use, which can cause the micro-structures to permanently buckle or bend. The resultant curvatures can reduce the efficiency and/or functionality of the micro-device, especially when the cantilever or ribbon structure is configured to reflect light, such as in the case of a optical MEM device.
One type of optical MEMS that is used to modulate one or more wavelengths of light is disclosed in the U.S. Pat. No. 5,311,360, issued to Bloom et al., which is hereby incorporated by reference. More advanced designs and techniques for making optical MEM devices are described in the U.S. Pat. No. 5,841,579 and the U.S. Pat. No. 5,808,797, both issued to Bloom et al., the contents of which are also both hereby incorporated by reference.
Briefly, optical MEM devices described in the above referenced patent have one or more sets of movable ribbons that comprise a support layer and a reflective top-layer. The support layer is preferably silicon nitride and the reflective top layer is preferably aluminum. Because of the high degree of stress between support layer and the reflective top-layer, the ribbons tend to buckle which significantly reduce the available optical surface area and hence the efficiency of the optical MEM device. Therefore, there is a need for a method of fabricating substantially flat micro structures, such as ribbons and/or cantilevers.
SUMMARY OF THE INVENTION
The current invention is directed to a micro-device comprising at least one suspended micro-structure which is preferably a ribbon structure or cantilever structure, also referred to herein as a release structure. The release structure comprises a silicon-based support layer which is preferably a silicon nitride layer and a reflective top layer that is preferably aluminum. The micro-device is preferably configured to modulate a light with the release structure.
In accordance with the embodiments of the invention, a stress compensating silicon dioxide layer is positioned between the support layer and the top layer. The stress compensating layer helps to control or reduce curvature of the micro structure or release structure.
In a preferred embodiment of the invention, the micro device is an optical MEM which comprises a release structure with plurality of ribbon structures. In accordance with the embodiments of the invention, each of the ribbons has an average width in a range of about 0.5 to about 13 microns and average length in a range of about 10 to about 800 microns. Preferably, alternating ribbons are configured to be selectively moved, relative to stationary ribbons, in order to modulate light.
Each of the ribbons preferably has a silicon-nitride support layer with a thickness in a range of about 800 to about 1200 Angstroms, a reflective top layer with a thickness in a range of about 500 to about 1000 Angstroms and a silicon dioxide compensating layer with a thickness in a range of about 800 to about 8000 Angstroms. Each ribbon can be an individual ribbon or, alternatively, the ribbons are formed as a monolithic comb structure. Regardless of the configuration, the ribbons are preferably coupled to and secured to a support substrate through one or more securing features. The support substrate is preferably a silicon-based wafer.
In accordance with the embodiments of the invention, a compensating layer is selectively formed over regions corresponding to. active regions of the ribbons. Further, the compensating layer can be selectively formed over the central portions of the active regions of the ribbons. In accordance with the embodiments of the invention, the compensating layer thickness can be controlled, such that the height difference between portions of a ribbon with the compensating layer and the portions of the ribbon without the compensating layer corresponds to a distance approximately equal to n&lgr;/2 (wherein n=a whole number). Accordingly, light that is reflected from portions of the ribbon with the compensating layer and the portions of the ribbon without the compensating layer will be in phase. In yet further embodiments, ribbons or a micro-structures with compensating layers, such as described above, are annealed to further reduce the curvature as described below.
In a preferred embodiment of the invention, a plurality of movable ribbons with compensating layers are encapsulated within a die structure and are electrically coupled to a driver circuit for selectively moving alternating ribbons.
In accordance with a preferred method of the invention, a micro-device is formed from a substrate comprising a device layer, wherein the device layer comprises a silicon-nitride under-layer, a reflective top-layer and a stress compensating silicon dioxide layer therebetween. The release features of the micro-device are patterned from a device layer using a lithographic mask and etch techniques, wherein portions of the underlying substrate are etched away to release the patterned device layer.
The support features for supporting the micro-structures on the substrate, are preferably formed by etching trenches or dimples into the substrate before forming or depositing the device layer. The device layer then fills the trenches or dimples and integrates the device layer into the substrate such that the micro-structures remain attached to the substrate after a subsequent etching process.


REFERENCES:
patent: 1525550 (1925-02-01), Jenkins
patent: 1548262 (1925-08-01), Freedman
patent: RE16767 (1927-10-01), Jenkins
patent: 1814701 (1931-07-01), Ives
patent: 2415226 (1947-02-01), Sziklai
patent: 2783406 (1957-02-01), Vanderhooft
patent: 2920529 (1960-01-01), Blythe
patent: 2991690 (1961-07-01), Grey et al.
patent: RE25169 (1962-05-01), Glenn
patent: 3256465 (1966-06-01), Weissenstern et al.
patent: 3388301 (1968-06-01), James
patent: 3443871 (1969-05-01), Chitayat
patent: 3553364 (1971-01-01), Lee
patent: 3576394 (1971-04-01), Lee
patent: 3600798 (1971-08-01), Lee
patent: 3656837 (1972-04-01), Sandbank
patent: 3657610 (1972-04-01), Yamamoto et al.
patent: 3693239 (1972-09-01), Dix
patent: 3743507 (1973-07-01), Ih et al.
patent: 3752563 (1973-08-01), Torok et al.
patent: 3781465 (1973-12-01), Ernstoff et al.
patent: 3783184 (1974-01-01), Ernstoff et al.
patent: 3792916 (1974-02-01), Sarna
patent: 3802769 (1974-04-01), Rotz et al.
patent: 3811186 (1974-05-01), Larnerd et al.
patent: 3861784 (1975-01-01), Torok
patent: 3862360 (1975-01-01), Dill et al.
patent: 3871014 (1975-03-01), King et al.
patent: 3886310 (1975-05-01), Guldberg et al.
patent: 3896338 (1975-07-01), Nathanson et al.
patent: 3915548 (1975-10-01), Opittek
patent: 3935499 (1976-01-01), Oess
patent: 3935500 (1976-01-01), Oess et al.
patent: 3938881 (1976-02-01), Biegelsen et al.
patent: 3941456 (1976-03-01), Schilz et al.
patent: 3942245 (1976-03-01), Jackson et al.
patent: 3943281 (1976-03-01), Keller et al.
patent: 3947105 (1976-03-01), Smith
patent: 3969611 (1976-07-01), Fonteneau
patent: 3980476 (1976-09-01), Wysocki
patent: 3991416 (1976-11-01), Byles et al.
patent: 4001663 (1977-01-01), Bray
patent: 4004849 (1977-01-01), Shattuck
patent: 4006968 (1977-02-01), Ernstoff et al.
patent: 4009939 (1977-03-01), Okano
patent: 4011009 (1977-03-01), Lama et al.
patent: 4012116 (1977-03-01), Yevick
patent: 4012835 (1977-03-01), Wallick
patent: 4017158 (1977-04-01), Booth
patent: 4020381 (1977-04-01), Oess et al.
patent: 4021766 (1977-05-01), Aine
patent: 4034211 (1977-07-01), Horst et al.
patent: 4034399 (1977-07-01), Drukier et al.
patent: 4035068 (1977-07-01), Rawson
patent: 4067129 (1978-01-01),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Controlled curvature of stressed micro-structures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Controlled curvature of stressed micro-structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Controlled curvature of stressed micro-structures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3278047

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.