Motor vehicles – Power – Electric
Reexamination Certificate
1999-09-10
2001-03-06
Camby, Richard M. (Department: 3618)
Motor vehicles
Power
Electric
C180S065230
Reexamination Certificate
active
06196344
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to control systems and methods for hybrid electric vehicles.
2. Description of the Related Art
In a hybrid electric vehicle, a plurality of torque sources are available. Typically, such sources include an engine such as an internal combustion engine, and an electric machine. In one general topology of hybrid electric vehicles, the electric machine is a motor/generator interposed between the engine and the vehicle's transmission. The motor/generator can add torque to supplement the torque provided by engine. Further, the motor/generator can act as a generator in order to convert excess engine torque into electric energy for storage in a storage device such as a battery. This function as a generator can be in furtherance of the driver's request for the vehicle to decelerate (i.e., regenerative braking). The motor/generator can also act as a generator in a manner transparent to the driver of the vehicle, in order to assure that the battery maintains a reasonable state of charge.
Coordinated control of the engine, motor/generator and transmission is, of course, paramount for excellent vehicle performance. In one possible control partitioning, three controllers can be provided: an electronic engine controller (EEC), a transmission controller (TCM) and a vehicle system controller (VSC). In such a partitioning, the EEC would provide generally traditional engine control functions. The TCM would also provide generally traditional transmission control functions. The VSC would take accelerator position, vehicle speed, battery state of charge and other variables into consideration and partition a driver-commanded torque (as expressed primarily by accelerator position) into a desired motor/generator torque and a desired engine torque.
The driver-commanded torque would be provided from the VSC to both the EEC and the TCM. Because the TCM needs actual torque at its input for its control as well, the VSC provides a signal reflecting the sum of actual motor/generator torque (which the VSC knows because it performs control of the motor/generator) and actual measured engine torque or estimated engine torque (estimated within the VSC). When a transmission shift is impending or underway, the TCM provides a commanded transmission input torque to the VSC, which acts to cause the torque at the input to the transmission to conform to the command. This commanded torque allows the TCM to perform its shift as appropriate.
There are several concerns with the aforementioned control method. First, it requires the VSC to be able to anticipate dynamic effects, such as, for example, the effects of dynamic fueling strategy and manifold air flow, on actual engine torque, whereas in fact the EEC is the controller having the best knowledge of that information. This may be addressed in two ways, neither entirely satisfactory: 1) an engine torque sensor may be included in the system, or 2) the engine torque may be estimated within the EEC which has far better access to all engine control, sensor and calibration variables, as well as the control strategy itself. The first is an unusual and expensive solution, while the second will introduce a time delay during which the engine torque is computed in the EEC, passed to the VSC for combination with the starter/alternator torque and then passed to the TCM. This time delay will result in poor transmission shift quality. These specific issues derive from the genesis of this hierarchical control in a parallel HEV where the engine and electric machine each contribute substantial torque to propel the vehicle either separately or in combination. In such a case, it is absolutely essential that the VSC intervene completely in the connection between driver demand and the actual engine control inputs. In another type of HEV, the so-called “low storage requirement” or LSR hybrid having the topology described above, the torque contribution of the motor/generator is very small compared to that of the engine, and the vehicle has no electric-only propulsion mode at all. Thus the LSR system can take great advantage of the familiarity and proven base of control methodology of the more accustomed direct driver control of the engine with less severe intervention by the VSC. Such a strategy also allows use of non-hybrid powertrain components and controls with minimal modification.
SUMMARY OF THE INVENTION
It is an object of the present invention to overcome the above-described drawbacks of alternative control methods for hybrid electric vehicles.
The present invention provides several control methods adapted for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.
In one embodiment, the present invention provides a method for controlling the powertrain comprising: (a) providing a signal from the EEC to the TCM to reflect a sum of an actual or estimated electric machine torque and an actual or estimated engine output torque; (b) providing a signal from the TCM to the EEC to reflect a TCM-commanded transmission input torque; and (c) partitioning the TCM-commanded transmission input torque signal into a TCM-commanded engine torque signal and a TCM-commanded electric machine torque signal.
In a second embodiment, the present invention provides a method for controlling the powertrain comprising: (a) providing an accelerator position signal to the VSC; (b) in the VSC, calculating a first desired electric machine torque to reflect a driver-commanded boost or regenerative torque, the first desired electric machine torque being a function of the accelerator position signal; (c) providing a modified accelerator position signal from the VSC to the EEC, the modified accelerator position signal reaching 100% before the first accelerator position signal; and (d) controlling output torque of the engine at least partly as a function of the modified accelerator position signal.
In a third embodiment, the present invention provides a method for controlling the powertrain comprising: (a) providing an accelerator position signal to the VSC; (b) in the VSC, calculating a first desired electric machine torque to reflect a driver-commanded boost or regenerative torque, the first desired electric machine torque being a function of the accelerator position signal; (c) controlling output torque of the engine at least partly as a function of the accelerator position signal; (d) in the VSC, calculating a second desired electric machine torque to reflect a battery-charge-maintenance torque; (e) controlling the electric machine in view of the first desired electric machine torque and the second desired electric machine torque; (f) providing a first signal from the VSC to the EEC to reflect a driver-commanded boost or regenerative torque of the electric machine; and (g) providing a second signal from the VSC to the EEC to reflect a battery-charge maintenance torque of the electric machine.
REFERENCES:
patent: 5720690 (1998-02-01), Hara et al.
patent: 5751137 (1998-05-01), Kiuchi et al.
patent: 5788004 (1998-08-01), Friedmann et al.
patent: 5808427 (1998-09-01), Worden et al.
patent: 5821706 (1998-10-01), Koga
patent: 5841201 (1998-11-01), Tabata et al.
patent: 5847520 (1998-12-01), Theurillat et al.
patent: 5862497 (1999-01-01), Yano et al.
Camby Richard M.
Ford Global Technologies Inc.
Sparschu Mark S.
LandOfFree
Control system and method for a hybrid electric vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Control system and method for a hybrid electric vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control system and method for a hybrid electric vehicle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2463761