Control of particulate flowback in subterranean wells

Earth boring – well treating – and oil field chemistry – Well treating – Contains organic component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C507S269000, C507S271000, C507S273000, C166S280100

Reexamination Certificate

active

06172011

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the recovery of hydrocarbons from subterranean wells. In this invention, a method, fluid, porous pack and system for controlling the transport of particulate solids back from the wellbore is provided. Fibers may be pumped downhole with proppant to form a porous pack that serves to inhibit the flow of solid particulates from the well, while still allowing the flow of hydrocarbons at reasonable rates. Other methods allow for selective formation of voids or channels within the porous pack, that facilitating well production while filtering undesirable materials that are not to be admitted into the wellbore.
BACKGROUND OF THE INVENTION
Transport of particulate solids during the production of oil or other fluid from a wellbore is a serious problem in the oil field.
The problem arises because in extracting oil from underground it is necessary to facilitate a flowpath for the oil to allow the oil to reach the wellbore. The oil is then produced by allowing it to travel up the wellbore to the surface of the ground.
Transported particulate solids sometimes clog the wellbore, thereby limiting or completely stopping oil production. Such solids represent a significant wear factor in well production equipment, including the pumps and seals used in the recovery and pumping process. Particles present in the pumped fluid sometimes cause excess friction and greatly increase wear on sensitive portions of the fluid handling and production equipment. Finally, these particulate solids must be separated from the oil to render the oil commercially useful, adding even more expense and effort to the processing of oil.
Undesirable paticulate flowback materials that are transported in fluids flowing to the wellbore are particularly pronounced in unconsolidated formations. By “undesirable”, it is meant that the flowback of the particle is undesirable. In some cases the particles flowed back may be proppant, which is desirable when in place in the formation (its intended function), but is not desirable if it flows out of the formation and up the wellbore. When that occurs, proppant particle becomes an undesirable contaminant because in that instance it acts to reduce, not increase, the production of oil from the well in an efficient manner.
In general, unconsolidated formations are those that are less structured, and therefore, more easily facilitate the uninhibited flow of fine particles. Further, particulates sometimes are located in the near wellbore area for reasons that are not simply based upon natural flow to such areas. In some cases, the presence of particulates is attributed to well treatments performed by the well operator that place particulate solids into the formation or the near wellbore area. Examples of such treatments are fracturing and gravel packing.
Numerous different methods have been attempted in an effort to find a solution to the problem of the undesirable flow of particulates. What has been needed in the industry is a method, material, or procedure that will act to limit or eliminate flowback of particulate materials placed into the formation in a fracturing process. Until the time of this invention, there was no-satisfactory method of reducing or eliminating flowback.
One method employed in the past is a method of gradually releasing the fracturing pressure once the fracturing operation has been completed so that the fracture closure pressure of the formation rock acting against the proppant builds gradually. In this way, the method allows proppant the matrix to stabilize before fracturing fluid flowback and well production operates to carry significant quantities of the proppant out of the fractures and back to the wellbore.
Another method that has been employed in some instances to assist in reducing flowback of particulates is the use of so-called “resin-coated proppant”, that is, particulate proppant materials having an adherent coating bonded to the outer surface of the proppant so that the proppant particles are bonded to each other. This process further reduces the magnitude of proppant flowback in some cases. However, there are significant limitations to the use of resin-coated proppant. For example, resin coated proppant is significantly more expensive than other proppant materials, which significantly limits it application to less economically viable wells.
Fracturing treatments may employ thousands or even millions of pounds of proppant in a single well or series of wells. Thus, the use of expensive, resin-coated proppants is generally limited by economics of well operation to only certain types of wells, or is sometimes limited to use in only the final stages of a fracturing treatment, sometimes known as the “tail” end of the fracturing job, or simply the “tail-in” of proppant near the end of the pumping job.
In unconsolidated formations, it is common to place a filtration bed of gravel in the near-wellbore area to present a physical barrier to the transport of unconsolidated formation fines with the production of wellbore fluids. Typically, such so-called “gravel packing operations” involve the pumping and placement of a quantity of gravel and/or sand having a mesh size between 10 and 60 U.S. Standard Sieve Series mesh into the unconsolidated formation adjacent to the wellbore. It is sometimes desirable to bind the gravel particles together to form a porous matrix for passage of formation fluids while facilitating the filtering out and retainment in the well of the bulk of the unconsolidated sand and/or fines transported to the near wellbore area by the formation fluids. The gravel particles may constitute a resin-coated gravel which is either pre-cured or can be cured by an overflush of a chemical binding agent once the gravel is in place. In some instances, various binding agents have been applied to the gravel particles to bind them together, forming a porous matrix.
Unfortunately, gravel packing is a costly and elaborate procedure that is to be avoided if possible. Further, some wellbores are not stable, and thus cannot be gravel packed. Further, gravel packing does not completely eliminate the production of fines particulates, and it is preferable to avoid the production of particulates without employing a gravel packing operation if possible. Gravel packing will not work in all instances.
Another recurring problem in pumping wellbore fluids is the enormous amounts of energy required to pump fluids containing large proppant concentrations at high rates for relatively long periods of time. Large amounts of energy are needed to overcome the great frictional forces between the proppant slurry and the interior of the tubular through which the slurry is being pumped. Above a certain threshold pressure, the fluid/proppant mixture cannot be pumped at all, because of the great frictional forces present at the liquid/tubular interface on the interior surface of the tubular or wellbore. The industry needs a viable solution to the problem of excess friction during pumping of proppant. Further, the industry needs a method or fluid that will inhibit production of particles, proppant and fines without substantially adversely effecting oil recovery from the wellbore.
SUMMARY OF THE INVENTION
The present invention provides a method, fluid, porous pack, and system for treating a subterranean formation. In one embodiment, it provides for formation of a porous solid pack that inhibits the flow of both deposited proppant and natural formation particulates and fines back through the wellbore with the production of formation fluids. In the practice of this invention, it is possible to build a porous pack within the formation that is comprised of fibers and proppant in intimate mixture.
This porous pack filters out unwanted particles, proppant and fines, while still allowing production of oil. In some cases, the porous pack may be selectively fitted with voids, or finger-shaped projections, sometimes called “channels”. Such channels are located within the structure of the porous pack, and serve to provide a permeable barrier that retard

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Control of particulate flowback in subterranean wells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Control of particulate flowback in subterranean wells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control of particulate flowback in subterranean wells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2441459

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.