Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...
Reexamination Certificate
2000-06-30
2003-02-11
Yucel, Remy (Department: 1636)
Chemistry: molecular biology and microbiology
Process of mutation, cell fusion, or genetic modification
Introduction of a polynucleotide molecule into or...
C800S278000, C536S024100
Reexamination Certificate
active
06518066
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to methods and compositions for regulating the expression of genes in eukaryotic cells, particularly through the use of promoters that are chemically inducible or repressible.
BACKGROUND OF THE INVENTION
A wide variety of bacterial species produce acylated homoserine lactone (AHL) derivatives that function in cell-cell communication. This signaling system is used, for example, to monitor population cell density in a process called quorum sensing. Each cell in a population produces a low basal level of the diffusible AHL via the activity of an AHL synthase, usually a member of the LuxI family of proteins. The AHL concentration increases with bacterial population density until the AHL concentration is sufficient to cause expression of various AHL-dependent genes via an AHL receptor protein, usually a member of the LuxR family of transcription regulators. In at least some species, the AHL synthase gene is inducible by AHL, leading to auto-induction of AHL synthesis. Quorum sensing systems have been described in
Vibrio fischeri
(lux bioluminescence genes),
Pseudomonas aeruginosa
(virulence genes),
Agrobacterium tumefaciens
(conjugal transfer),
Serratia liquefaciens
(swarming motility), and
Erwinia caratovora
(antibiotic production), for example. For reviews, see, e.g.: Fuqua and Greenberg,
Curr. Opinion Microbiol
. 1:183-189, 1998; and Fuqua et al.,
Ann. Rev. Microbiol
. 50:727-751, 1996).
According to published studies of the LuxR-LuxI quorum sensing system of
Vibrio fischeri
, specific binding to the LuxR binding site (or “lux box”) within the lux promoter sequences was not observed with either LuxR alone or bacterial RNA polymerase alone, but required the presence of both LuxR and RNA polymerase. Thus, it has been thought that inducible gene expression under the control of LuxR is possible only when bacterial RNA polymerase is also present, i.e., in bacterial cells, limiting the utility of quorum sensing systems in eukaryotic cells.
A number of systems have been described for regulating eukaryotic gene, including various promoter elements that are chemically inducible. However, there remains a need for an inducible promoter system that can be used in a variety of eukaryotic organisms, that is strictly regulated and strongly induced, and that responds to a chemical inducer that has low cytotoxicity.
SUMMARY OF THE INVENTION
We have discovered that bacterial quorum sensing systems can be used in controlling eukaryotic gene expression, whether in the nucleus or in organelles, such as chloroplasts, of a eukaryotic cell.
According to one aspect of the invention, non-naturally occurring polynucleotides are provided that incorporate elements of a bacterial quorum sensing system and that are useful for controlling or modulating gene expression in a eukaryotic cell. According to one embodiment, a polynucleotide is provided that comprises a promoter that is functional in a eukaryotic cell comprising a cis element (e.g., a lux box or similar sequence) that mediates responsiveness of the promoter to an N-acylhomoserine lactone (AHL). Such cis elements are referred to herein as AHL-response elements. Upon binding an AHL or an AHL analog, the AHL receptor binds to the AHL-response element, modulating transcription of the operably linked gene of interest. Any known AHL-response element, AHL synthase gene, or AHL receptor gene may be used in the practice of the invention. The AHL receptor gene encodes a native AHL receptor, portions of a native AHL receptor that bind to a corresponding AHL-response element), or a fusion protein that comprises a native AHL receptor (or a portion thereof that binds to a corresponding AHL-response element) fused in-frame to a eukaryotic activation or repression domain.
Another embodiment of the invention is a polynucleotide that comprises a promoter that is functional in a eukaryotic cell (the promoter optionally comprising an AHL-response element) that is operably linked to a sequence that encodes an AHL synthase or an AHL receptor.
According to one aspect of the invention, a polynucleotide is provided that comprises: a first sequence comprising a first promoter that is functional in a eukaryotic cell comprising an AHL-response element, and a second sequence comprising a second promoter that is functional in the eukaryotic cell operably linked to a sequence encoding an AHL receptor. When expressed in the cell, the AHL receptor binds to the AHL-response element and modulates transcription of the first promoter. Another embodiment of the invention is a polynucleotide comprising: a first sequence comprising a promoter that is functional in a eukaryotic cell comprising an AHL-response element; a second sequence comprising a promoter that is functional in the cell comprising an AHL-response element operably linked to a sequence encoding an AHL synthase that, when expressed in the eukaryotic cell, synthesizes an AHL; and a third sequence comprising a third promoter that is functional in the cell operably linked to a sequence encoding an AHL receptor. Binding of the AHL by the AHL receptor causes the AHL receptor to bind to the AHL-response element and modulate transcription of the first promoter. In a eukaryotic cell that provides other enzymes required for AHL biosynthesis, treatment of the cell with exogenous AHL initiates auto-induced synthesis of the AHL and consequently continued expression of the gene of interest.
According to another embodiment of the invention, eukaryotic cells are provided that comprise: a first sequence comprising a promoter that is functional in the eukaryotic cell comprising an AHL-response element operably linked to a gene of interest; and a second sequence comprising a promoter that is functional in the eukaryotic cells operably linked to a sequence encoding an AHL receptor. One or both of the promoters may be non-constitutive, such as a cell-, tissue-, or organ-, or developmental stage-specific promoter, or an inducible promoter, for example.
Another aspect of the invention relates to organellar (including plastid or mitochondrial) expression. According to one embodiment, a eukaryotic cell is provided that comprises: an organelle comprising a first sequence comprising a promoter that is functional in the organelle, the promoter comprising an AHL-response element operably linked to a gene of interest; and a nucleus, the nucleus comprising a second sequence comprising a second promoter that is functional in the nucleus, the second promoter operably linked to a sequence that encodes a polypeptide comprising (i) an organelle-transport (or targetting or transit) peptide and (ii) an AHL receptor. The AHL receptor produced by expression of the second sequence and uptake of the polypeptide by the organelle binds to the AHL-response element and modulates transcription of the first promoter upon binding of an AHL. According to an alternative embodiment, the AHL receptor is expressed in the organelle rather than being taken up by the organelle. In this embodiment, the cell comprises an organelle, which in turn comprises a first sequence comprising a promoter that is functional in the organelle comprising an AHL-response element operably linked to a gene of interest; and a second sequence comprising a promoter that is functional in the organelle operably linked to a sequence that encodes a polypeptide comprising an AHL receptor which binds to the AHL-response element and modulates transcription of the first promoter upon binding of an AHL.
According to another aspect of the invention, compositions are provided that comprise (a) an amount of an AHL or AHL analog that is effective, when applied to a cell comprising an AHL receptor and a promoter comprising an AHL-response element, to cause the AHL receptor to bind the AHL-response element and modulate transcription of the promoter, and (b) a carrier that is substantially non-toxic to the cell. In the case of compositions for application to plant cells, the carrier is a well known agronomically acceptable carrier that is substantially non-phy
Adams Thomas H.
Anderson John C.
Crossland Lyle D.
Gavrias Victoria
McBride Kevin E.
Calgene LLC
Davis Katharine F
Yucel Remy
LandOfFree
Control of gene expression in eukaryotic cells does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Control of gene expression in eukaryotic cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control of gene expression in eukaryotic cells will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3158696