Control of cement clinker production by analysis of sulfur...

Compositions: coating or plastic – Coating or plastic compositions – Inorganic settable ingredient containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S758000, C432S014000, C432S058000, C432S106000

Reexamination Certificate

active

06383283

ABSTRACT:

TECHNICAL FIELD
The invention is related to producing cement clinker.
BACKGROUND
In known processes for producing cement clinker, raw material fed into a rotary kiln is preheated and partially decarbonated in a multistage cyclone suspension preheater system and a precalciner by using the heat of combustion gases exhausted from the rotary kiln and precalciner. As the combustion gases and raw material mix, lime (CaO) in the raw material and sulfur dioxide (SO
2
) in the combustion gases react to form calcium sulfite (CaSO
3
). The calcium sulfite is formed in the preheater and in the main electrostatic precipitator of the stack. The calcium sulfite, in turn, reacts with oxygen in the preheater system to form calcium sulfate (CaSO
4
), if there is sufficient oxygen. If there is not enough oxygen in the atmosphere at the kiln's inlet, the calcium sulfate may decompose into lime and sulfur dioxide and leave depositions at the kiln's inlet. If there is an insufficient excess of oxygen in the rotary kiln, the calcium sulfate may decompose at temperatures of 1200° Celsius. Similarly, if there is not enough oxygen in the preheaters, the calcium sulfite may decompose into lime and sulfur dioxide. This decomposition also leads to an increase in sulfur dioxide concentration in the gas in the kiln, which leads to depositions of calcium salts on the shells and walls of the preheater's cyclones and ducts. The level of deposit formation may be increased when the combustion fuel is a solid fuel high in sulfur (i.e., above 2%), such as petcoke, oil shale, and agricultural or industrial wastes, or a fuel oil high in sulfur content because of the resulting increased sulfur dioxide concentration in the kiln gas. The increased sulfur circulating in the gases causes an increase in the quantity of calcium sulfite. This may result in deposits to a level sufficient to close the kiln inlet, preheater, preheater cyclones, and ducts connecting the cyclones, thereby stopping production. The problem can be alleviated by extracting a fraction of the gas between the rotary kiln and preheater and sending it to a bypass tower. In the bypass tower, the gas is quenched with cooler atmospheric air and a dust rich in sulfur dioxide precipitates out. The desulfurized gas is then directed into the preheater, the result being an overall reduction in the concentration of sulfur dioxide in the gas in the preheater. This solution poses two significant problems: a loss in thermal energy and an environmental issue in disposing of the precipitated dust.
Alternatively, the oxygen can be controlled to ensure an excess oxygen concentration in the kiln and eliminate the need for a bypass tower. However, this potential solution is prone to problems associated with oxygen sensor reliability in a kiln environment, which is further reduced at the kiln inlet where oxygen concentration is even more important. At the inlet, the gas intake for oxygen analyzers can be filled by the dust circulating in the kiln environment. Because current oxygen sensors in the kiln environment may be unreliable, it is not practical to provide continuous control of cement clinker production using an oxygen sensor. To provide excess oxygen by merely increasing the flow of air through the kiln, precalciner, and preheaters may create other problems associated with reduced thermal efficiency and pressure loss.
SUMMARY
The invention provides a process having an air intake rate that is regulated based on the quantity of calcium sulfate measured in the cement clinker end product as sulfur or sulfur trioxide (SO
3
). The air intake rate directly affects the amount of oxygen in the kiln that is available for the reaction converting CaSO
3
to CaSO
4
, and also affects the rate at which they decompose. An increase in the concentration of oxygen to 4.5 to 5.5% increases the temperature at which calcium sulfate decomposes to a temperature greater than the sintering temperature such that CaSO
4
becomes a component of the finished product rather than decomposing into gases and leaving deposits in the kiln, preheater, and preheater cyclones. Thus, analysis of the sulfur in the cement clinker end product can be used to control the oxygen concentration in the sintering zone and the reaction zone of the kiln and thereby indirectly control the proportion of sulfur exiting the system as part of the cement clinker.
The air intake to the kiln is mechanically adjusted by increasing or decreasing the speed of a main exhauster that creates a negative pressure that pulls air into and through the kiln, preheater, preheater cyclone's, and precalciner. The air carries the combusted fuel gases from the kiln and precalciner into the preheater. In the preheater and preheater cyclones, the raw material is preheated and separated from the gases. It also is partially precalcined, i.e., the calcium carbonate in the raw material is partially decomposed into lime and carbonic (CO
2
) gas. In the precalciner, the raw material is further decarbonated to a level of 90 to 95%. In addition, the gas is desulfurized in the main electrostatic precipitator of the stack and preheater by transfer of the sulfur in the gas to the raw material through the reaction CaO+SO
2
→CaSO
3
. Thus, 90 to 95% of the carbonic gas in the raw material is released before the raw material reaches the kiln inlet.
Control of the air intake may be accomplished when using a rotary kiln for producing the cement clinker. The raw material enters the system as a whole at the upper end of the preheater and enters the rotary kiln through an inlet at the kiln's upstream end, which is connected to the preheater outlet. The inlet also contains a vertical connection to the precalciner through which passes the combustion gases produced by burning fuel at the rotary kiln's burner. The burner, located at the downstream end of the rotary kiln, produces the heat needed for sintering the raw materials in the kiln. The kiln is inclined to facilitate the flow of material. After the cement clinker passes through the kiln 's sintering zone, it exits the rotary kiln to the cooler through an outlet adjacent to the burner. The outlet for the cement clinker also serves as an inlet to the rotary kiln for a portion of the air that is blown into the cooler to cool the cement clinker. The air is heated as it cools the cement clinker. The air is blown into the cooler by multiple fans and creates an increase in pressure in the cooler.
The cooling air not flowing into the kiln exits the cooler through two outlets. One outlet directs the air into an electrostatic precipitator to recover fines of the clinker, after which the air is released into the atmosphere. The other outlet directs the air into a dust chamber that returns clinker dust to the cooler and directs the air into the precalciner. A valve on the line between the dust chamber and precalciner regulates the flow of air into the precalciner and affects the proportion of air flowing through these two lines and the kiln. As less air is directed to the precalciner by closing the valve, more air flows through the kiln and electrostatic precipitator of the cooler.
The precalciner decarbonates the raw material using the combustion gases from the rotary kiln and by combusting fuel at a burner in the precalciner. The oxygen for the combustion is supplied as a component of the heated air entering the precalciner from the rotary kiln and through an air inlet connected to the tertiary air duct and located at the base of the precalciner. The raw material feeds into the precalciner from the dust outlet of a cyclone suspension preheater.
The invention permits a more economical use of solid, liquid or gaseous high sulfur fuels in the production of cement clinker in rotary kilns. The invention also permits operating conditions to be maintained so that the sulfur in the fuel is transferred to the cement clinker in the form of CaSO
4
, which drastically reduces the SO
2
concentration in the process and thereby reduces SO
2
emissions to a minimum. The invention improve

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Control of cement clinker production by analysis of sulfur... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Control of cement clinker production by analysis of sulfur..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control of cement clinker production by analysis of sulfur... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2843568

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.