Control-hold mode

Multiplex communications – Communication over free space – Signaling for performing battery saving

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S349000, C370S318000, C455S522000

Reexamination Certificate

active

06717924

ABSTRACT:

BACKGROUND
1. Field
The present invention relates generally to communications, and more specifically, to reducing the load of the reverse link and the power consumption of remote stations.
2. Background
The field of wireless communications has many applications including, e.g., cordless telephones, paging, wireless local loops, personal digital assistants (PDAs), Internet telephony, and satellite communication systems. A particularly important application is cellular telephone systems for remote subscribers. As used herein, the term “cellular” system encompasses both cellular and personal communications services (PCS) frequencies. Various over-the-air interfaces have been developed for such cellular telephone systems including, e.g., frequency division multiple access (FDMA), time division multiple access (TDMA), and code division multiple access (CDMA). In connection therewith, various domestic and international standards have been established including, e.g., Advanced Mobile Phone Service (AMPS), Global System for Mobile (GSM), and Interim Standard 95 (IS-95). IS-95 and its derivatives, IS-95A, IS-95B, ANSI J-STD-008 (often referred to collectively herein as IS-95), and proposed high-data-rate systems are promulgated by the Telecommunication Industry Association (TIA) and other well known standards bodies.
Cellular telephone systems configured in accordance with the use of the IS-95 standard employ CDMA signal processing techniques to provide highly efficient and robust cellular telephone service. Exemplary cellular telephone systems configured substantially in accordance with the use of the IS-95 standard are described in U.S. Pat. Nos. 5,103,459 and 4,901,307, which are assigned to the assignee of the present invention and incorporated by reference herein. An exemplary system utilizing CDMA techniques is the cdma2000 ITU-R Radio Transmission Technology (RTT) Candidate Submission (referred to herein as cdma2000), issued by the TIA. The standard for cdma2000 is given in the draft versions of IS-2000 and has been approved by the TIA and 3GPP2. Another CDMA standard is the W-CDMA standard, as embodied in 3
rd
Generation Partnership Project “
3
GPP,”
Document Nos. 3G TS 25.211, 3G TS 25.212, 3G TS 25.213, and 3G TS 25.214.
The telecommunication standards cited above are examples of only some of the various communications systems that can be implemented. Within these various communications systems, multiple users must share limited system resources. In accordance with the actual system implementation, resources such as frequency bandwidth, time, transmission power, or spreading code assignments are typically shared by multiple users within the system. In a FDMA system, the system bandwidth is divided into many frequency channels and each frequency channel is allocated to a user. In a TDMA system, the system bandwidth is divided into many time slots and each time slot is allocated to a user. In a CDMA system, the system bandwidth is simultaneously shared among all users by using spreading codes, wherein each user is assigned a spreading code.
User demand drives the design and development of more efficient systems. The present invention addresses this need by allowing remote stations to individually employ an improved Control-Hold Mode that will reduce the overall load of the reverse link and the power consumption of remote stations. The reverse link comprises the communication channels from the remote stations directed to a base station. The forward link comprises the communication channels from a base station to various remote stations operating within the range of the base station. A remote station that is operating in the improved Control-Hold Mode will not be monitoring nor responding to most of the forward link transmissions from a base station. Hence, when individual remote stations are operating in the improved Control-Hold Mode, the overall load of the reverse link will be reduced.
Moreover, once a remote station enters into the improved Control-Hold Mode, some of the processing circuitry that is utilized for monitoring and responding to forward link signals will be left idle, which immediately and directly impact the power consumption of the remote station. Hence, another benefit of employing the improved Control-Hold Mode will be an increase in the battery life of a remote station.
SUMMARY
Methods and apparatus are presented to address the needs stated above. In one aspect, an apparatus is presented for implementing an improved Control-Hold Mode within a remote station, wherein the remote station operates within a communication system that employs packet data channels with associated control channels, and associated feedback channels, the apparatus comprising: a memory element; and a processing element configured to execute a set of instructions stored in the memory element, the set of instructions for: ceasing the monitoring of packet data channels from a base station; ceasing the monitoring of control channels associated with the packet data channels from the base station; turning off a reverse link acknowledgment channel; gating off transmissions from the remote station to the base station; and intermittently transmitting over a data control channel.
In another aspect, a method is presented for updating an active set when a remote station is in an improved Control-Hold Mode, the method comprising: transmitting a pilot strength measurement to a base station; receiving a signaling message from the base station; transitioning from the improved Control-Hold Mode to an Active Mode, wherein the transitioning is triggered by the signaling message; receiving an acknowledgment message with update information from the base station; updating the active set with the update information from the base station; and transitioning from the Active Mode to the Control-Hold Mode.
In another aspect, a method is presented for a remote station to switch sectors in a base station while the remote station is in a Control-Hold Mode, comprising: determining whether a channel quality indicator channel is presently gated off; if the channel quality indicator channel is not completely gated off, then transmitting a message on the channel quality indicator channel to a different sector; if the channel quality indicator channel is completely gated off, then: transmitting a signaling message on a data control channel to the base station; receiving a forward link acknowledgment message on a common assignment channel; switching to a different sector; and transmitting a reverse link acknowledgment message on the data control channel.
In another aspect, a method is presented for transitioning from an improved Control-Hold Mode to an Active Mode, wherein the transitioning is initiated by a remote station, the method comprising: transmitting a signaling message over a reverse data control channel to a base station while in the improved Control-Hold Mode; starting continuous transmissions over a channel quality indicator channel to the base station; starting the monitoring of a forward packet data channel and an associated control channel; receiving an acknowledgment signal over the forward packet data channel; and starting reverse link transmissions in accordance with the Active Mode.
In another aspect, a method is presented for transitioning a remote station from an improved Control-Hold Mode to an Active Mode, wherein the transitioning is initiated by a base station, the method comprising: transmitting a signaling message over a forward common assignment channel to the remote station, whereupon the signaling message is repeatedly transmitted until an acknowledgment signal is received from the remote station; transmitting an acknowledgment message over a reverse data control channel to the base station from the remote station; activating at least two feedback channels at the remote station; and starting the monitoring of a forward packet data channel and associated control channel at the remote station.


REFERENCES:
patent: 4901307 (1990-02-01), Gilhousen et al.
patent: 5103459 (1992-04-01), Gilhousen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Control-hold mode does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Control-hold mode, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control-hold mode will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3263309

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.