Control device for internal combustion engine and a continuously

Interrelated power delivery controls – including engine control – Transmission control – Continuously variable friction transmission

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

477904, F16H 5914

Patent

active

053643216

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

This invention relates to a control device for an internal combustion engine and a continuously variable transmission. The control device is connected to the continuously variable transmission disposed between the internal combustion engine and driving wheels, and changes and controls a transmission ratio of the continuously variable transmission at a transmission ratio changing speed suitable for driving conditions of the vehicle while controlling an output of the internal combustion engine.


DESCRIPTION OF RELATED ART

Generally, engine output (hereinafter, referred merely as "output") of an internal combustion engine (hereinafter, referred merely as an engine) mounted on a vehicle is mechanically controlled by a throttle device coupled to a driver-operable member such as an accelerator pedal and a throttle lever (which are representatively referred as accelerator pedal hereinafter) through an accelerator cable.
The accelerator pedal and the throttle device cooperate with each other such that the displacement corresponding to a stepping amount of the accelerator pedal is transmitted to the throttle device and a throttle valve in the device is actuated at this displacement (stepping amount). Unfortunately, excessive output may be generated due to careless driving and lack of skill of a driver. Consequently a vehicle may slide on starting, slip on the icy ground, and skid (slip) at a sudden acceleration.
Accordingly, methods have been proposed such as a dual throttle valve method where a main throttle valve and a sub-throttle valve are arranged in the throttle device. The sub-throttle valve is electronically controlled and a traction control (power control) method utilizing the so called drive-by-wire method is used. In this method, the accelerator cable is not disposed between the accelerator pedal and the throttle valve, and an opening of the accelerator pedal is detected by using a sensor such as a potentiometer. The throttle valve is then operated by a stepping motor or the like based on output of the sensor.
In the traction control method of the type described, an ECU (engine control unit) generally calculates an optimum opening (i.e., target engine output) for the sub-throttle valve and the main throttle valve in accordance with the data (1) representative of the rotation condition of the front and rear wheels and (2) a step amount for the accelerator pedal. The ECU controls a driving torque of the wheels in a range not to cause the undesirable skid.
Information regarding the required output of the engine is properly set in accordance with, for example, the opening of the accelerator pedal. As mentioned above, the ECU calculates and sets the required output of the engine when using the traction control method for drivingly controlling the sub-throttle valve and the main throttle valve so as to obtain the required output. In this event, it is preferable to carry out the calculation of the required output with respect to an actual torque under current engine conditions. More specifically, by calculating a deviation between a required torque and the actual torque and by carrying out a real-time control to eliminate the deviation, it is possible to prevent an over-control and poor response of the control device.
While the actual torque of the engine can be detected by a bench test using a chassis dynamometer, it is difficult in practice to mount it on a vehicle due to the weight, size, and costs of the device. Plus there is a serious defect that output (energy) loss is inevitably caused.
Accordingly, it is assumed that precision of the output control can be improved by calculating the actual torque in accordance with intake air flow information by using a conventional control system.
One power transmission method for transmitting output torque of the engine to wheels is variable transmission. As one such transmission, a continuously variable transmission (CVT) can continuously change the transmission ratio by using a steel belt and pulleys, and can increase or decrease a transmission ra

REFERENCES:
patent: 4505169 (1985-03-01), Ganoung
patent: 4515040 (1985-05-01), Takeuchi et al.
patent: 4720793 (1988-01-01), Watanabe et al.
patent: 5046177 (1991-09-01), Vahabzadeh
patent: 5050455 (1991-09-01), Yamashita et al.
patent: 5231582 (1993-07-01), Takahashi et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Control device for internal combustion engine and a continuously does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Control device for internal combustion engine and a continuously, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control device for internal combustion engine and a continuously will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1093679

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.