Control device for an endoscope

Surgery – Endoscope – Having flexible tube structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S139000

Reexamination Certificate

active

06656111

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a control device having a steering device for steering the bendable distal end of an endoscope.
2. Description of the Related Art
Endoscopes provided with a pair of angle knobs for steering the distal end of the insertion portion of the endoscope, and a corresponding pair of lock knobs which respectively lock the pair of angle knobs to thereby lock the distal end of the insertion portion are known in the art. Among such endoscopes, endoscopes whose angle knobs and/or lock knobs are formed as hollow knobs are also known in the art.
Medical endoscopes need to be disinfected and sterilized each time before use. In the case of sterilizing a medical endoscope with gas, the endoscope is sterilized through the use of difference in pressure between the internal and external pressures of the endoscope. Therefore, the stress due to pressure fluctuation tends to be applied to elements of the hollow angle knobs and/or lock knobs since the volume of the inner space of each angle or lock knob is generally small. In medical endoscopes which are intended to be sterilized with gas, in order to make the endoscopes compliant with such stress, the wall thickness of each hollow knob is made heavy while the adhesive coated surface of the same is made large, if any hollow knob has such a surface, to retain a sufficient strength of each hollow knob. However, from a view point of minimization, reduction in weight, and productivity of the endoscope, both the wall thickness and the adhesive coated surface are preferably small.
In conventional endoscopes, in the case where a hollow angle knob is formed as a hollow member which includes upper and lower walls which are separate from each other in the direction of the axis of the central rotational shaft, and an outer peripheral wall which connects the upper and lower walls in assembled condition, such a hollow angle knob generally has a two-piece construction. Namely, such a hollow angle knob includes a first half piece including the upper wall and an upper half of the outer peripheral wall and a second half piece including the lower wall and a lower half of the outer peripheral wall, wherein the first half piece and the second half piece are coupled to each other to form the hollow angle knob. According to this conventional structure, since the hollow angle knob is constructed from two or more external elements, it is troublesome and time-consuming to make the two or more external elements independent of each other, while the two or more external elements have to be assembled while ensuring the watertight construction of the hollow angle knob. As a result, the hollow angle knob cannot be made easily at a low cost of production. Furthermore, in the above described case where the hollow angle knob is constructed from the first half piece and the second half piece, a mold seam is inevitably formed on the outer peripheral wall of the hollow angle knob. Such a mold seam makes it difficult and time-consuming to wash and clean the angle knob after the endoscope is used.
A conventional medical endoscope is generally provided with a operational body having a grip portion, and an insertion portion which extends from the operational body. In the case where the insertion portion is a flexible insertion tube, the distal end of the insertion portion serves as a steerable bendable portion which can be steered to bend right, left, upward and downward by controlling a steering device (an L-R angle knob and a U-D angle knob) provided on the operational body. The operator manually controls the angle knobs while holding the grip portion of the operational body during the use of the endoscope. The grip portion and each angle knob are generally made of a resin. Therefore, the external surfaces of the angle knobs and the grip portion are slippery, which may cause a medical accident. To prevent this problem from occurring, an endoscope whose grip portion has an anti-slip knurled surface is known in the art. However, such a knurled surface is not good enough to prevent such a problem from occurring; furthermore, such a knurled surface makes it difficult to wash and clean the endoscope.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a control device of an endoscope which is lightweight with an outstanding manufacturability, and which cannot be easily damaged even if a large difference in pressure occurs between the outside and the inside of the endoscope.
It is another object of the present invention to provide a control device of an endoscope which can be produced at a low cost of production and which contributes to the maintainability of the endoscope, e.g., ease of cleaning the endoscope.
It is another object of the present invention to provide a control device of an endoscope whose operational body can be securely held, gripped and controlled with little possibility of the operational body slipping off the hand of the operator, or the fingers of the operator slipping off a rotational control knob during the use of the endoscope.
Other objects of the invention will become apparent to one skilled in the art in the following disclosure and the appended claims.
To achieve the object mentioned above, according to an aspect of the present invention, an endoscope is provided, including a hollow operational body, a hollow shaft provided on the hollow operational body, at least one hollow rotational control knob which is rotatably supported on the hollow shaft, and an air passage via which an inner space of the hollow operational body and an inner space of the at hollow rotational control knob have a communicative connection with each other, wherein the hollow shaft includes a portion of the passage.
In an embodiment, the hollow rotational control knob is positioned about an axis of the hollow shaft at an intermediate position between opposite ends of the axis. The air passage includes at least one radial path formed on the hollow shaft to extend in a radial direction of the hollow shaft to the inner space of the hollow rotational control knob; and at least one axial path formed in the hollow shaft so as to have a communicative connection with the radial path, and to extend in a direction of the axis of the hollow shaft to the inner space of the hollow operational body.
Preferably, the endoscope further includes at least one cylindrical member which is fitted on the hollow shaft, wherein the hollow rotational control knob is positioned about an axis of the hollow shaft at an intermediate position between opposite ends of the axis. The air passage includes at least one axial path formed in the hollow shaft to extend in a direction of the axis of the hollow shaft to the inner space of the hollow operational body; at least one first radial path formed on the hollow shaft to extend in a radial direction of the hollow shaft from the axial path to an outer peripheral surface of the hollow shaft; at least one second radial path formed on the cylinder to extend in the direction of the axis of the hollow shaft so as to provide a communicative connection with the axial path and the inner space of the hollow rotational control via the second radial path regardless of a relative rotational position between the cylindrical member and the hollow shaft.
In an embodiment, the hollow rotational control knob is fixed to the cylindrical member so that the cylindrical member rotates about the hollow shaft together with the hollow rotational control knob when the hollow rotational control knob is turned.
In an embodiment, the at least one hollow rotational control knob includes two hollow rotational control knobs which are positioned about the axis of the hollow shaft at different position between opposite ends of the axis, and the inner space of each of the two hollow rotational control knobs have a communicative connection with the inner space of the hollow operational body via the air passage.
In an embodiment, the endoscope further includes another hollow rotational control knob which i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Control device for an endoscope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Control device for an endoscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control device for an endoscope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3130640

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.