Control apparatus of internal combustion engine

Power plants – Internal combustion engine with treatment or handling of... – By means producing a chemical reaction of a component of the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S274000, C060S285000, C123S339110

Reexamination Certificate

active

06732504

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATION
This application is based on Japanese Patent Applications No. 2001-153412 filed on May 23, 2001, and No. 2001-223436 filed on Jul. 24, 2001 the contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a control apparatus of an internal combustion engine.
2. Related Art
A car manufactured in recent years is provided with a catalyst such as a three-way catalyst, which is used for purifying exhausted gas, on the exhaust pipe of the car. At a cold start in which the engine is started at a low temperature of the engine and the catalyst, the ignition timing is retarded to increase the temperature of the exhausted gas. The increased temperature of the exhausted gas in turn promotes the heating of the catalyst so that the temperature of the catalyst is increased to a value in an active temperature range at an early time.
If the ignition timing is retarded in order to heat the catalyst at an early time, however, the engine torque decreases. In order to prevent the engine torque (or the engine speed) from decreasing, an idle speed control system (ISC) is used to increase the opening of an ISC valve (or a throttle valve) in order to raise an intake air quantity. As a result, the negative pressure of the intake air increases, reducing a difference between the negative pressure of the intake air and the atmospheric pressure. Accordingly, a braking force amplification effect of a brake booster inevitably becomes smaller.
In order to solve the above problems, as is disclosed in U.S. Pat. No. 5,497,745, with the initial value of the ignition timing at a cold start set at a target retard angle, ignition retarding control (or catalyst-early-heating control) is started and an intake manifold negative pressure is compared with a threshold value at predetermined control intervals. The threshold value is an intake manifold negative pressure required for assuring a proper negative pressure in a brake booster. If the intake manifold negative pressure is smaller than the threshold value, the ignition timing is retarded. If the intake manifold negative pressure is greater than the threshold value, on the other hand, the ignition timing is advanced.
As described above, with the technology disclosed in the U.S. patent, the initial value of the ignition timing at a cold start is set at a target retard angle and then the ignition timing is retarded or advanced in dependence on the intake manifold negative pressure. At a cold start, however, the fuel stability of the engine is poor so that, if the ignition timing is much retarded from the cold start as is the case with the disclosed technology, the fuel condition becomes unstable, unavoidably increasing the quantity of an exhausted unburned gas component such as HC or CO. In addition, if the ignition timing is much retarded from the cold start, the retard angle for the ignition timing causes a delay of the decreasing of the intake manifold negative pressure. Thus, it inevitably takes a longer time for the intake manifold negative pressure to decrease from a pre-start pressure (that is, the atmospheric pressure) to the threshold value, which is an intake manifold negative pressure required for assuring a proper brake booster negative pressure as described above. In the mean time, the negative pressure of the brake booster cannot be assured at a sufficient value so that the performance of the brake booster cannot be fully displayed. In short, with the disclosed technology, it is difficult to assure a sufficient negative pressure of the brake booster while reducing the exhaust emission at a start of the engine at the same time.
On the other hand, U.S. Pat. No. 3,129,802 discloses a technology whereby the closing timing of an intake valve is retarded when the pressure in a negative pressure tank for a brake booster is determined to be on the positive pressure side relative to a predetermined pressure. There is already known an apparatus (VVT) for adjusting a valve timing as is disclosed in JP-A No. S59-119007. The VVT is controlled to realize a valve timing proper for the operating state of the engine. The VVT is provided for achieving one of important objectives to improve the state of combustion. By execution of advancing control on the VVT in accordance with reduction of the negative pressure, however, the state of combustion cannot be improved sufficiently.
In addition, if the ignition timing is retarded in order to heat the catalyst at an early time, the resulting negative pressure is not sufficient as described above. Thus, with the technology disclosed in U.S. Pat. No. 3,129,802, advancing control is executed on the VVT in accordance with a negative pressure signal, resulting in an unimproved state of combustion.
SUMMARY OF THE INVENTION
It is thus an object of the present invention addressing the problems to provide an internal combustion engine with a control apparatus capable of assuring a required negative pressure at a start time of the engine and at a time immediately following the start time.
It is another object of the present invention to provide an internal combustion engine with a control apparatus capable of assuring a negative pressure required by a brake unit during a period in which early heating control of a catalyst is executed.
It is a further object of the present invention to provide an internal combustion engine with a control apparatus capable of assuring a negative pressure required by a brake unit at a start time of the engine and at a time immediately following the start time.
It is a still further object of the present invention to provide an internal combustion engine with a control apparatus capable of realizing early heating control of a catalyst and assuring a negative pressure required by a brake unit.
It is a still further object of the present invention to provide an internal combustion engine with a control apparatus capable of reducing the amount of obstruction resulting from control to assure a negative pressure required by a brake unit to control to heat a catalyst at an early time and control of a valve timing to improve combustion.
In order to achieve the objects described above, in accordance with an aspect of the present invention, an internal combustion engine is provided with a control apparatus, wherein a negative pressure recognizing means recognizes a negative pressure of an intake pipe or a negative pressure of a brake booster, and an ignition retarding control means starts ignition retarding control after the negative pressure reaches a level equal to or lower than a predetermined value. When fuel stability is poor at a cold start, instead of retarding an ignition timing, the ignition timing is set at a timing that improves the state of combustion so that it is possible to lower a pressure in an intake pipe at an early time while suppressing generation of unburned gas components such as HC and CO. Thus, at a point of time a negative pressure in the intake pipe (or a negative pressure of a brake booster) becomes equal to or lower than a predetermined value allowing a proper negative pressure of the brake booster to be assured, the ignition retarding control is started to retard an ignition timing and, hence, increase the temperature of exhausted gas so that the catalyst can be heated at an early time.
In this configuration, the time between the start of the engine and the completion of the catalyst heating may become slightly longer. By delaying the start timing of the ignition retarding control, however, it is possible to suppress generation of unburned gas components such as HC and CO. Caused by deterioration of a combustion state at a start of the engine, the generation of unburned gas components is the main cause of deterioration of emission at the start of the engine. Thus, it is possible to reduce the total emission quantity during the time between the start of the engine and the completion of the catalyst heating. As a result, it is possible to assure a negative pressure of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Control apparatus of internal combustion engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Control apparatus of internal combustion engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control apparatus of internal combustion engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3268972

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.