Control apparatus for hybrid vehicle

Interrelated power delivery controls – including engine control – Plural engines – Electric engine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S19800E, C123S481000, C180S065230

Reexamination Certificate

active

06616570

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a control apparatus for a hybrid vehicle. In particular, the invention relates to a control apparatus for a hybrid vehicle that can improve fuel consumption by cutting off the cylinders (i.e., by closing both intake valves and exhaust valves of an engine) under certain conditions.
2. Description of the Related Art
Heretofore there is known a hybrid vehicle incorporating a motor in addition to an engine as drive sources for vehicle propulsion. One type of such a hybrid vehicle is a parallel hybrid vehicle where the drive output from the engine is assisted by the motor.
In the parallel hybrid vehicle, at the time of acceleration the drive output from the engine is assisted by means of the motor, while at the time of deceleration, various control is carried out such as performing battery charging by deceleration regeneration, so that the remaining charge (electrical energy) of the battery can be maintained while satisfying the requirements of the driver. Furthermore, since the structural mechanism is such that the engine and the motor are arranged in series, the structure can be simplified, and the weight of the whole system can be lightened. Therefore, there is an advantage in that there is a high degree of freedom in vehicle assembly.
Here, for the aforementioned parallel hybrid vehicle, there is a construction in which a clutch is incorporated between the engine and motor (for example, refer to Japanese Unexamined Patent Application, First Publication No. 2000-97068) in order to avoid the influence of engine friction (engine braking) at the time of deceleration regeneration, or the engine, motor and transmission are connected in series (for example, refer to Japanese Unexamined Patent Application, First Publication No. 2000-125405) in order to achieve maximum simplification.
However, in the former construction in which a clutch is installed between the engine and motor, there are disadvantages in that the construction is complicated by the clutch installation and the degree of freedom in vehicle assembly is worsened, and in addition the transmission efficiency of the power transmission system even when running is reduced due to usage of the clutch. On the other hand, in the latter construction in which the engine, motor and transmission are connected in series, since the amount of regeneration is reduced by the aforementioned engine friction, the electrical energy that could be conserved by regeneration is reduced. Therefore, there is a problem in that the amount of driving assistance (assistance amount) and the like by the motor is limited.
Furthermore, for a method of reducing engine friction during deceleration in the former type, there is a method for increasing the amount of regeneration by controlling the throttle valve opening at the time of deceleration using an electronic throttle control system to greatly reduce pumping losses. However, since a large amount of fresh air flows as is into the exhaust system during deceleration, it reduces the temperature of a catalyst and an A/F (air-fuel ratio) sensor, and there is a problem in that optimum exhaust gas control is affected detrimentally.
SUMMARY OF THE INVENTION
Therefore, the present invention provides a hybrid vehicle control apparatus that can achieve a significant improvement in fuel consumption, using motor driving assistance, by reducing the amount of engine friction through performing a reliable cylinder cut-off operation, and can also cut off the cylinders in an optimal state, so that the cylinder cut-off can be quickly cancelled in a case where it is not desirable.
The present invention is control apparatus for a hybrid vehicle with an engine (for example, engine E in the embodiment) capable of cutting off cylinders and a motor (for example, motor M in the embodiment) as drive sources of the vehicle, which performs regenerative braking by the motor depending on a deceleration state when the vehicle is decelerating, comprising: a cylinder cut-off determination section (for example, the processing associated with an all cylinder cut-off standby flag F_ALCSSTB in the embodiment) which determines whether the cylinders should be cut off depending on the running conditions of the vehicle; a cylinder cut-off cancellation determination section (for example, the processing associated with an all cylinder cut-off cancellation condition satisfied flag F_ALCSSTP in the embodiment) which determines whether the cylinder cut-off should be cancelled, depending on the running conditions of the vehicle while the operation of the cylinders of the engine is cut off; a cylinder cut-off execution section (for example, the processing associated with an all cylinder cut-off solenoid flag F_ALCSSOL in the embodiment) which operates an actuator (for example, a spool valve SV in the embodiment) for cutting off the cylinder operation of the engine when cylinder cut-off is determined to be possible by the cylinder cut-off determination section; and a cylinder cut-off control section (for example, the processing associated with an all cylinder cut-off execution flag F_ALCS in the embodiment) which cuts off the cylinders of the engine based on the operating conditions of the cylinder cut-off determination section, the cylinder cut-off cancellation determination section and the cylinder cut-off execution section, wherein when a voltage (for example, voltage VB in the embodiment) of a drive source of the actuator that is operated by the cylinder cut-off execution section is greater than or equal to a predetermined voltage, and a temperature of a medium that acts by the operation of the actuator is within a predetermined range, the cylinder cut-off determination section determines that cylinder cut-off is possible.
With such a construction, it is possible to cut off the operation of the cylinders of the engine by the cylinder cut-off control section after cylinder cut-off is determined to be possible by the cylinder cut-off determination section and the actuator for cutting off the cylinders of the engine is instructed to operate by the cylinder cut-off execution section.
Furthermore, when the cylinder cut-off cancellation determination section judges the cancellation of cylinder cut-off while the operation of the cylinders is cut off, after the cylinder cut-off execution section cancels the operation of the actuator, it is possible for the cylinder cut-off control section to operate the engine normally.
Here, the cylinder cut-off determination section judges that cylinder cut-off is possible only in the case where the voltage of the drive source of the actuator and the temperature of the medium satisfy certain conditions, so that it is possible to prevent switching to cylinder cut-off operation in a case where the voltage of the drive source of the actuator or the temperature of the medium are not adequate. Accordingly, there is an effect of preventing a reduction in the response of the actuator, enabling reliable switching to cylinder cut-off operation.
In the present invention, the cylinder cut-off execution section may apply an oil pressure of a working fluid by operating the actuator, to close both an intake valve (for example, intake valve IV in the embodiment) and exhaust valve (for example, exhaust valve EV in the embodiment) of the engine, and the temperature of the medium may be the oil temperature (for example, oil temperature TOIL in the embodiment) of the working fluid.
With such a construction, the oil temperature of the working fluid is maintained within a predetermined range, adequate actuator response is ensured, and cylinder cut-off can be performed. Therefore, there is an effect that both the intake valve and exhaust valve can be closed reliably.
In the present invention, when an inlet negative pressure (for example, inlet pipe negative pressure PBGA in the embodiment) of an inlet pipe is greater than or equal to a predetermined value that is on the atmospheric pressure side, the cylinder cut-off determination section may determine that c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Control apparatus for hybrid vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Control apparatus for hybrid vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Control apparatus for hybrid vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3020974

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.