Continuously regenerated and integrated suppressor and...

Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S638000, C210S656000, C210S659000, C210S198200

Reexamination Certificate

active

06200477

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of ion chromatography (IC), and, in particular, to a continuously regenerated, integrated suppressor and detector for use in suppressed ion chromatography (SIC).
BACKGROUND OF THE INVENTION
Suppressed ion chromatography (SIC) is a commonly practiced method of ion chromatography which generally uses two ion-exchange columns in series followed by a flow through conductivity detector for detecting sample ions. The first column, called the analytical or separation column, separates the analyte ions in a sample by elution of the analyte ions through the column. The analyte ions are flowed through the analytical column via a mobile phase comprising electrolyte. Generally, a dilute acid or base in deionized water is used as the mobile phase. From the analytical column, the separated analyte ions and mobile phase are then flowed to the second column, which is called the suppressor or stripper. The suppressor serves two primary purposes: (1) it lowers the background conductance of the mobile phase by retaining (e.g., suppressing) the electrolyte of the mobile phase, and (2) it enhances the conductance of the analyte ions by converting the analyte ions to their relatively more conductive acid (in anion analysis) or base (in cation analysis). The combination of these two functions enhances the signal to noise ratio, and, thus, improves the detection of the analyte ions in the detector. Accordingly, upon exiting the suppressor, the analyte ions and suppressed mobile phase are then flowed to the detector for detection of the analyte ions. A variety of different types of suppressor devices and methods are discussed in U.S. Pat. Nos. 3,897,213; 3,920,397; 3,925,019; 3,926,559; and U.S. Ser. No. 08/911,847. Applicants hereby incorporate by reference the entire disclosure of these patent applications and patents.
As those skilled in the art will appreciate, both the mobile phase and the sample contain counterions of the analyte ions. A suppressor operates by ion exchange of suppressor ions, which are located in the suppressor, with both the (1) the mobile phase electrolyte counterions and (2) the sample counterions. In anion analysis, for example, the suppressor ions normally comprise hydronium ions and the mobile phase comprises electrolyte such as sodium hydroxide or mixtures of sodium carbonate and sodium bicarbonate. In cation analysis, the suppressor ions normally comprise hydroxide ions, and the mobile phase may comprise electrolytes such as hydrochloric acid or methanesulfonic acid. The suppressor ions are located on a stationary phase, which may be an ion exchange membrane or resin. As the mobile phase and sample (which contains both analyte ions and counterions of the analyte ions) are flowed through the stationary phase of the suppressor, the electrolyte counterions in the mobile phase and the sample counterions are retained on the stationary phase by ion exchange with the suppressor ions. When the suppressor ions are either hydronium or hydroxide, ion exchange of the electrolyte counterions with suppressor ions converts the mobile phase to water or carbonic acid, which are relatively non-conductive. On the other hand, the ion exchange of sample counterions with suppressor ions (i.e., hydronium or hydroxide ions) converts the analyte ions to their relatively more conductive acid (in anion analysis) or base (in cation analysis). Thus, the analyte ions, which are now in their relatively more conductive acid or base form, are more sensitive to detection against the less conductive background of the mobile phase.
However, unless the suppressor ions are continuously replenished during the suppression process, the concentration of suppressor ions on the stationary phase is reduced. Eventually the suppressor will become exhausted and its suppression capacity is either lost completely or significantly reduced. Thus, the suppressor must be either replaced or regenerated. The need to replace or regenerate the suppressor is inconvenient, may require an interruption in sample analysis, or require complex valving or regeneration techniques known in the art. One example of a known technique for regenerating a suppressor by continuously replenishing suppressor ions is disclosed in U.S. Pat. No. 5,352,360.
In addition to the need for regenerating or replacing suppressor ions, another problem associated with SIC is that a separate suppressor unit is usually required, and, therefore, the number of components in the system is increased over traditional IC systems. Traditional IC systems usually contain a mobile phase source, a pump, a sample injector, an analytical column and a detector for detecting the sample ions. In SIC, a separate suppressor unit is added to the system. This, in turn, increases the complexity of the system and also increases extra-column volume which may decrease chromatographic resolution and sensitivity. Therefore, it would also be advantageous to have a system of ion suppression chromatography which reduced the number of system components in traditional SIC systems.
Another problem associated with prior art SIC systems is that the mobile phase is converted to a weakly ionized form, which renders the mobile phase unsuitable for reuse. Thus, it would be advantageous if a system of SIC were developed in which the mobile phase is converted back to its strongly ionized form after suppression and, thus, may be reused.
SUMMARY OF THE INVENTION
In its various aspects, the present invention is capable of solving one or more of the foregoing problems associated with SIC.
In one aspect of the present invention, an integrated suppressor and detector is provided. By “suppressor” it is meant a device that is capable of converting the mobile phase to water or a weakly conductive form such as, for example, sodium carbonate or bicarbonate to carbonic acid and the ions to be detected (e.g. the analyte ions) to either their acid or base prior to detection. In this aspect of the invention, the suppressor is further equipped with sensor electrodes for detecting the analyte ions. By “integrated” it is meant that the suppressor and detector are contained within the same housing so that fluid transfer lines between a separately housed suppressor and detector are unnecessary.
In a further aspect of the invention, a method of suppression ion chromatography is provided wherein the suppressor is continuously regenerated during suppression. The suppressor comprises a stationary phase comprising suppressor ions which acts to suppress a mobile phase containing analyte ions to be detected. Electrolysis is performed on the mobile phase to produce regenerating ions. The regenerating ions are then flowed through the stationary phase to continuously replenish the suppressor ions lost during suppression. Preferably, electrolysis is performed on water present in the mobile phase.
In another aspect of the invention, an integrated suppressor and detector is provided. The integrated suppressor and detector comprises at least first and second regeneration electrodes and a fluid flow path extending between the first and second regeneration electrodes. A stationary phase comprising suppressor ions is positioned in the fluid flow path. The integrated suppressor and detector further comprises at least first and second sensor electrodes, in an electrical communication with a measuring device for recording analyte ions detected by the sensor electrodes.
In yet another aspect of the invention, a method of suppression ion chromatography is provided wherein the suppressed mobile phase is converted back to its strongly ionized state after suppression. Thus, the mobile phase is recycled and may be reused.


REFERENCES:
patent: 3920397 (1975-11-01), Small
patent: 3925019 (1975-12-01), Small
patent: 3926559 (1975-12-01), Stevens
patent: 4459357 (1984-07-01), Jansen
patent: 4751004 (1988-06-01), Stevens
patent: 4952126 (1990-08-01), Hanaoka
patent: 5248426 (1993-09-01), Stillian
patent: 5352360 (1994-10-01), Stillian
patent: 5597734 (1997-01-01), Small
patent: 563317

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Continuously regenerated and integrated suppressor and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Continuously regenerated and integrated suppressor and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuously regenerated and integrated suppressor and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2474507

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.