Textiles: fluid treating apparatus – Machines – With gas – steam or mist treating
Reexamination Certificate
1999-11-09
2002-05-28
Coe, Philip R. (Department: 1746)
Textiles: fluid treating apparatus
Machines
With gas, steam or mist treating
C068S0180FA, C068S178000, C068S20500R
Reexamination Certificate
active
06393871
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a continuously and combiningly operable breadth expansion and vibration enhanced spray dyeing machine (hereinafter as “continuous spray dyeing machine”) which is an highly efficient environment-preserving continuous spray dyeing and processing apparatus.
2. Description of the Prior Art
The term continuous spray dyeing machine used herein is intended to indicate a dyeing and processing apparatus which provides the fabric continuous dyeing and other processing. The fabric is continuously proceeded and substantially fully expanded in the breadthwise direction. The liquid dye and other fabric treating agents are brought into contact with the fabric in an atomized form by means of spray nozzles arranged above the fabric. A high speed air stream is formed under the fabric to create a low pressure zone which causes a pressure difference between the upper and lower sides of the expanded fabric. The static pressure above the fabric is greater than the pressure below so that the fabric can not only levitated and freely expanded in breadth direction via the high speed stream of air flow, but the fabric in motion can also periodically vibrate violently via the unbalanced pressure.
This vibration provides the energy for the dye, treating agents, or oxidation gases to penetrate into the fabric texture so as to enhance the absorption rate and diffusion speed of the dye into the fabric. Thus a continuous dyeing and processing operation with high efficiency, low energy consumption, low bath ratio and low pollution may be achieved.
The present invention is particularly related to an effect that is caused by the high speed air streams formed by a cloth guide tube. This does not only enhance the penetration and diffusion of the dye, but also speeds up the penetration of the oxidation gases to have a quick dye development when performing low temperature oxidation reduction dyeing. When performing other processing, It also provides a very efficient way to remove unwanted particles or impurities from the fabric so as to efficiently finish the operations of desizing, scouring, bleaching, soaping, reduction, enzyme treating, rinsing, relaxation, and drying. Therefore, the present invention can complete the overall dyeing and processing operations in a very short time as compared with the conventional dyeing apparatuses.
A conventional continuous dyeing machine is defined to be one that combines more than two machines with different functions to perform the dyeing process in a continuous way. When dyeing, there are three steps: dye padding, dye development and fixation, and washing and drying operations. The popular conventional continuous dyeing machines are developed by improving the design of the dye padding operation. To accomplish some operation, some designs follow a particular dyeing method; others choose a specific combination of individual machines. Therefore, to obtain a most reasonable manufacturing procedure or due to the limitation of the factory environment, the preprocessing operations are usually separated from the dyeing operation. Please refer to
FIGS. 1 and 2
.
FIG. 1
is a side view of the combined structure of a conventional dye padding continuous dyeing machine.
FIG. 2
shows a side view of a conventional continuous breadth expansion washing machine. Referring to
FIG. 1
, the combined structure comprises (listed according to the manufacturing order): a dye padding machine A, a steamer or a dryer B, an air oxidation machine C, a treating agent padding machine D, a steamer E, a washer F, a water remover G, and a dryer H. All the machines are connected in series and the fabric is drawn by the driving roller and cloth guide axis on each machine to continuously pass through each machine. To keep the fabric proceeding in a continuous way and fully expanded in width, the longitudinal and transverse directions of the fabric have to be stretched with a big tension.
Therefore, referring to
FIG. 3A
, the conventional continuous dyeing machine drags the fabric to pass the dye padding machine A and absorb the dye by a driving roller A
1
and a pressure roller A
2
on the dye padding machine. Thus, the size of the contact surface between the two rollers directly affects the dye padding rate, which in turn affects the depth of dyeing. To prevent the occurrence of color difference on both sides of the fabric, in addition to apply even pressures on both sides of the dye padding roller, the middle of the pressure roller must meet a crown standard so that the dye and treating agents can be evenly distributed.
FIGS. 3B and 3C
are the side views of the other commonly seen dye padding machines. The fabric past the dye padding machine A is immediately sent into and passes through the steamer B. There are many different forms for the steamer B, but all perform a single operation. It is different from the usual discontinuous dyeing machine. For example, the air flow type or liquid flow type dyeing machine can simultaneously perform continuous dye cycling and support to perform dyeing at the same time. The fabric passes through the steamer B or the air oxidation machine C to have the dye developed and fixed. The proceeding of the fabric is supported by a cloth guide axis set B
1
. When the dye gets fixed, the fabric is then guided into the washer F to remove the unfixed dye, remaining chemicals, or other impurities. Usually, the washer F has each tub as a unit F
1
and several units are connected into a group. In the tubs are stored with a larger amount of water. A water removing pressure roller F
2
is provided at the upper outlet of each tub. For the usual washers, a group has at least three tubs and up to fifteen tubs. The number depends upon the processing after dyeing. In conventional dye padding machines and steamers, the processing after dyeing includes operations such as re-oxidation, acid washing, neutralizing, hot showering, soaping, hot showing, and cold washing. Therefore, the washer with a group of seven to nine tubs is the best choice. After water washing and water removing, the fabric is guided into the dryer H to get dried. Usually, the dryer is consisted of several drying tubs. After dye padding, the fabric needs to be processed by dye development and fixation immediately and thus the dye development and fixation processing machine should be attached immediately after the dye padding machine.
So the conventional continuous dyeing machine is formed by connecting several different machines together to achieve the goal of continuous dyeing and processing.In practice, using the dye padding machine A to dye and proceed the fabric often makes the fabric without soft touch or has the problem of linearly folded dyeing. To ensure that the fabric can be fully expanded in width for dyeing and proceeding, the longitudinal tension is often greater than 1.5 kgF (per centimeter in width) in addition to the stretching in the transverse direction by a fabric stretching machine. Therefore, conventional continuous dyeing machines can only perform dyeing and processing on a tatted fabric, but the problem existing in the knitted or elastic fabric could not be resolved to date. Furthermore, in the dyeing process by the dye padding machine, although a small liquid amount dyeing can be achieved, yet the dyeing process can only be performed once. When performing dye development and fixation in the steamer, it cannot continuously supply the dye at the same time, and therefore the fabric can not obtain a deep color. When washing the fabric, a large amount of water is needed for cleaning. For a new generation of environment-preserving dyeing machine, the above mentioned continuous dyeing machine obviously needs many improvements and modifications.
Please refer to
FIG. 4
, which shows another spray dyeing apparatus with breadth expansion and vibration-enhanced dyeing operation invented by the inventor of this current invention. It is disclosed in the R.O.C. Pat. No. 098,316, the U.S. Pat. No. 5,775,136, and the PC
Coe Philip R.
Dougherty & Troxell
LandOfFree
Continuously and combiningly operable breadth expansion and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Continuously and combiningly operable breadth expansion and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuously and combiningly operable breadth expansion and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2834983