Continuous process for making an aqueous hydrocarbon fuel

Fuel and related compositions – Liquid fuels – Emulsion fuel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C044S302000, C044S325000, C044S326000, C044S629000, C044S639000

Reexamination Certificate

active

06530964

ABSTRACT:

TECHNICAL FIELD
The invention relates to a process for making aqueous hydrocarbon fuel compositions from a continuous process. More particularly, the invention relates to a continuous process for making an aqueous hydrocarbon fuel such as a diesel fuel or gasoline.
BACKGROUND OF THE INVENTION
Internal combustion engines, especially diesel engines, using water mixed with fuel in the combustion chamber can produce lower NOx, hydrocarbon and particulate emissions per unit of power output. Nitrogen oxides are an environmental issue because they contribute to smog and pollution. Governmental regulation and environmental concerns have driven the need to reduce NOx emissions from engines.
Diesel fueled engines produce NOx due to the relatively high flame temperatures reached during combustion. The reduction of NOx production includes the use of catalytic converters, using “clean” fuels, recirculation of exhaust and engine timing changes. These methods are typically expensive or complicated to be commercially used.
Water is inert toward combustion, but lowers the peak combustion temperature resulting in reduced particulates and NOx formation. When water is added to the fuel it forms an emulsion and these emulsions are generally unstable. Stable water-in-fuel emulsions of small particle size are difficult to reach and maintain. It would be advantageous to make a stable water-in-fuel emulsion that can be made continuously and stable in storage.
It would be advantageous to produce stable water-in-fuel emulsions by a continuous process because of increased throughput, increased shear efficiency, and cost effectiveness over a batch blending process. Applicant has discovered a continuous process to make stable water-in-fuel emulsions of small particle size.
The term “NOx” is used herein to refer to any of the nitrogen oxides, NO, NO
2
, N
2
O, or mixtures of two or more thereof. The terms “aqueous hydrocarbon fuel emulsion” and “water fuel emulsion” are interchangeable. The terms “aqueous hydrocarbon fuel” and “water fuel blend” are interchangeable.
SUMMARY OF THE INVENTION
The invention relates to a continuous process for making an aqueous hydrocarbon fuel, comprising: (1) mixing liquid hydrocarbon fuel and an emulsifier to form a hydrocarbon fuel/additive mixture; (2) emulsifying said hydrocarbon fuel/additive mixture with water under shear conditions to form an aqueous hydrocarbon fuel emulsion, wherein said emulsification is accomplished by at least two emulsifiers in series. The aqueous hydrocarbon fuel emulsion includes a discontinuous aqueous phase in a continuous fuel phase. The discontinuous aqueous phase comprises aqueous droplets having a mean diameter of 1.0 micron by the time the aqueous hydrocarbon fuel emulsion has been processed through the second emulsifier.
The water hydrocarbon fuel emulsion is comprised of water, fuel such as diesel, gasoline or the like and an emulsifier. The emulsifier includes but is not limited to: (i) at least one fuel-soluble product made by reacting at least one hydrocarbyl-substituted carboxylic acid acylating agent with ammonia or an amine, the hydrocarbyl substituent of said acylating agent having about 50 to about 500 carbon atoms; (ii) at least one of an ionic or a nonionic compound having a hydrophilic-lipophilic balance (HLB) of about 1 to about 40; (iii) a mixture of (i) and (ii); or (iv) a water-soluble compound selected from the group consisting of amine salts, ammonium salts, azide compounds, nitrate esters, nitramine, nitro compounds, alkali metal salts, alkaline earth metal salts, in combination with (i), (ii) or (iii).
The water hydrocarbon fuel emulsion optionally includes additives. The additives include but are not limited to a cetane improver(s), an organic solvent(s), an antifreeze agent(s), surfactant(s), other additives known for their use in fuels and combinations thereof.
This invention further provides for an apparatus for continuously making an aqueous hydrocarbon fuel, comprising: at least two emulsifiers in series; a tank containing a hydrocarbon fuel/additive mixture or separate tanks for the hydrocarbon fuel, emulsifier, additives, water, antifreeze or combinations thereof; pump(s) and conduit(s) for transferring the hydrocarbon fuel, additive, and/or emulsifier from the tanks to a first emulsification device; a conduit for transferring water from a water source to the first emulsification device; a conduit for transferring the aqueous hydrocarbon fuel emulsion from the first emulsification device to the second emulsification device; a conduit for transferring the aqueous hydrocarbon fuel emulsion from a second emulsification device to a fuel storage tank; a conduit for dispensing the aqueous hydrocarbon fuel emulsion from the fuel storage tank; a programmable logic controller for controlling: (i) the transfer of the components from the tanks to the first emulsification device (ii) the transfer of water from the water source to the first emulsification device; (iii) the emulsification of the hydrocarbon fuel/additive mixture and the water in the first emulsification device; (iv) the transfer of the aqueous hydrocarbon fuel emulsion from the first emulsification device to the second emulsification device; (v) the further emulsification of the hydrocarbon fuel emulsion in the second emulsification device, (vi) the transfer of the aqueous hydrocarbon fuel emulsions from the second emulsification device to a fuel storage tank; and (vii) a computer for controlling the programmable logic controller.
In one embodiment, the apparatus for the continuous process is in the form of a containerized equipment unit that operates automatically. This unit can be programmed and monitored locally at the site of its installation, or it can be programmed and monitored from a location remote from the site of its installation. The water fuel blend is dispensed to end users at the installation site. This provides a way to make the aqueous hydrocarbon fuel emulsions prepared in accordance with the invention available to end users in wide distribution networks.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
As used herein, the terms “hydrocarbyl substituent,” “hydrocarbyl group,” “hydrocarbyl-substituted,” “hydrocarbon group,” and the like, are used to refer to a group having one or more carbon atoms directly attached to the remainder of a molecule and having a hydrocarbon or predominantly hydrocarbon character. Examples include:
(1) purely hydrocarbon groups, that is, aliphatic (e.g., alkyl, alkenyl or alkylene), and alicyclic (e.g., cycloalkyl, cycloalkenyl) groups, aromatic groups, and aromatic-, aliphatic-, and alicyclic-substituted aromatic groups, as well as cyclic groups wherein the ring is completed through another portion of the molecule (e.g., two substituents together forming an alicyclic group);
(2) substituted hydrocarbon groups, that is, hydrocarbon groups containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the group (e.g., halo, hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy);
(3) hetero-substituted hydrocarbon groups, that is, hydrocarbon groups containing substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Heteroatoms include sulfur, oxygen and nitrogen. In general, no more than two, and in one embodiment no more than one, non-hydrocarbon substituent is present for every ten carbon atoms in the hydrocarbon group.
The term “lower” when used in conjunction with terms such as alkyl, alkenyl, and alkoxy, is intended to describe such groups that contain a total of up to 7 carbon atoms.
The term “water-soluble” refers to materials that are soluble in water to the extent of at least one gram per 100 milliliters of water at 25° C.
The term “fuel-soluble” refers to materials that are soluble in the fuel to the extent of at least one gram per 100 milliliters of fuel at 25° C.
The term “water fuel emulsion” is int

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Continuous process for making an aqueous hydrocarbon fuel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Continuous process for making an aqueous hydrocarbon fuel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuous process for making an aqueous hydrocarbon fuel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067997

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.