Surgery: kinesitherapy – Kinesitherapy – Exercising appliance
Reexamination Certificate
1999-11-09
2001-07-31
Yu, Justine R. (Department: 3764)
Surgery: kinesitherapy
Kinesitherapy
Exercising appliance
C601S023000, C601S034000
Reexamination Certificate
active
06267735
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to medical rehabilitation devices, and more particularly to a device which may be used to flex the knee joint of a patient as part of a therapeutic or rehabilitative program.
BACKGROUND OF THE INVENTION
Knee injuries are an unfortunate byproduct of today's emphasis on sports and physical fitness; however, effective surgical techniques have been developed to repair injuries such as to the anterior cruciate ligament (ACL) and other components of the knee. In addition, many members of our aging population are candidates for total knee replacement surgery because of disease and/or injury. All of these surgical procedures must be followed by a period of rehabilitation in order for recovery to be complete. Furthermore, some injuries to the knee may not require surgery but instead may require an extensive rehabilitation period. Such rehabilitation generally requires that the knee be flexed and the leg be extended such as occurs in normal walking; however, it is frequently undesirable for a recovering patient to bear weight on his leg while rehabilitating his knee. In addition, when a knee has suffered a trauma or other injury, or after surgery, a person often lacks the necessary muscle control, strength or will to flex his knee and straighten his leg. Consequently, there is a need for a rehabilitation device that can be used to mobilize the joint over a period of time as a part of the orthopedic care which follows an injury, illness or surgical procedure.
The therapeutic use of an external force to flex and extend the limb to induce motion is referred to as passive motion. The application of continuous passive motion to a joint following a period of immobilization, injury, surgery or the like, has been shown to reduce post-operative pain, decrease the number of adhesions, decrease the amount of atrophy experienced by the surrounding and supporting muscle, promote the speed of recovery, improve the range of motion in a much shorter time, and reduce the risk of deep vein thrombosis and post-traumatic osteopenia. Depending on the nature and severity of the knee injury or the nature and extent of the surgical procedure performed, therapeutic treatment sessions involving continuous passive motion may be carried out on a daily basis for several days or several weeks.
The concept of a therapeutic use of passive and continuous motion is not new, as evidenced by a number of known devices that are designed to impose continuous passive motion on the limb and joint of a patient for such purpose. For example, U.S. Pat. No. 4,492,222 of Hajianpour describes a knee exerciser comprised of a leg support that is hinged at one end to a thigh support and is fixed at its other end to a motor assembly. The other end of the thigh support is pivotally attached to a frame, and the motor assembly is also pivotally attached to the frame. A screw that is threaded into a tubular portion of the leg support is rotated by the motor to drive the device. The Hajianpour device also includes an up/down counter that is arranged to count revolutions of the motor drive shaft via a magnetic sensor. When the count of the counter reaches either the flexion or extension limits, the direction of rotation of the motor is changed.
U.S. Pat. No. 4,558,692 of Greiner describes a motor driven leg exerciser having an adjustable leg support, a movable footrest, a motor, and controls for the user or therapist. In operation, the motor drives a chain driven rod back and forth in an arc to move the leg support. As the rod reaches each end of its arc, it activates a directional switch which in turn stops the motor, causes the device to pause for a predetermined period of time, and reverses the direction of the rod. The arcuate movement of the rod causes the leg support to move the patient's leg from an extended position to a bent position.
As the use of therapeutic continuous passive motion (CPM) machines has increased, so too have the number of developments and improvements in the related technology. For example, U.S. Pat. No. 4,798,197 of Nippoldt et al. and U.S. Pat. No. 4,558,692 of Greiner describe various safety features which, upon the occurrence of any of several conditions, will cause the carriage holding the leg to stop and reverse direction. The Nippoldt device includes a remote controller by means of which a patient can cause the carriage to start moving in one direction, to stop, and to move in the other direction through successive actuations of a START/STOP switch mounted on a pendent. The Greiner device is equipped with a patient control box that allows the patient to temporarily stop the motion of the carriage, reverse direction and then start the motion again, or to turn the machine off. In addition, if the carriage of the Greiner device moves the leg into a position where resistance is encountered, an override switch will automatically stop and reverse the motor to prevent injury or discomfort to the patient.
U.S. Pat. No. 4,825,852 of Genovese et al. describes hinges between the upper and lower members of the leg support which are designed to better mimic the motion of the knee joint and thereby increase patient comfort; U.S. Pat. Nos. 5,255,188 and 5,452,205, both of Telepko, describe a universal controller for a CPM device which includes a clock and a liquid crystal display for displaying the accumulated running time for an exercise session; U.S. Pat. No. 5,682,327 of Telepko describes a direct drive CPM device which maintains an approximately constant angular velocity at the knee so as to increase the comfort level of the patient; and U.S. Pat. No. 4,665,899 of Farris et al. describes a CPM device having control means which allows the user or a therapist to change the degree of extension and flexion of the leg, and also having a repetition counter that can count and display the number of flexion repetitions completed. Furthermore, U.S. Pat. No. 4,566,440 of Bemer, et al. and U.S. Pat. No. 5,682,327 of Telepko describe continuous passive motion devices which pivot the patient's leg about a virtual axis that is coincident with the hip pivot axis. This helps to avoid placing unnecessary strain on the patient's leg or hip joint, and increases the comfort of the patient as treatment is carried out.
U.S. Pat. Nos. 5,452,205 and 5,682,327, both of Telepko, describe a dynamic tension mode of treatment in which a continuous constant force is applied to the joint under treatment for a predetermined period of time in order to extend the range of motion of the joint. The constant force is applied in one direction for a predetermined period of time or until a predetermined limit is reached. A constant force is then applied in the opposite direction. This sequence of motion and tensioning is designed to minimize patient fatigue. U.S. Pat. No. 5,252,102 of Singer et al. describes an electronic range of motion apparatus which is adaptable for use with a prosthesis or a CPM machine and which gradually increases the patient's flexion and extension ability with gentle stretching utilizing a self-programmable feature and multiple range options. Finally, U.S. Pat. No. 5,682,852 of Telepko describes a “warm-up” mode of operation by which the range of motion of the device is automatically and gradually increased over a preset period of time at the beginning of a treatment session. U.S. Pat. No. 4,825,852 of Genovese et al. describes a similar “warm-up” feature by which the programmed force and range of motion is automatically reduced somewhat when exercise is restarted after a rest period.
Despite these improvements in CPM technology, conventional CPM devices suffer from several disadvantages. Among these is the fact that conventional CPM machines do not generally provide a mechanism for relieving or avoiding pain or sensitivity that a patient may experience when his knee is being flexed or his leg extended in a direction or to a point or angle which is uncomfortable. While some CPM machines automatically turn themselves off when a preset level of res
Blanchard Frederick W.
Brown Stephen L.
Hofstatter Dwayne
Linville D. Chris
Pohl Jeffrey K.
Chambliss Bahner & Stophel P.C.
Chattanooga Group, Inc.
Yu Justine R.
LandOfFree
Continuous passive motion device having a comfort zone feature does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Continuous passive motion device having a comfort zone feature, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuous passive motion device having a comfort zone feature will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2481571