Continuous oxidation process for crystal pulling apparatus

Single-crystal – oriented-crystal – and epitaxy growth processes; – Apparatus – For crystallization from liquid or supercritical state

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C117S019000, C117S020000, C117S932000

Reexamination Certificate

active

06315828

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a process for oxidizing silicon monoxide, silicon vapor, and hypostoichiometric silicon dioxide in a crystal pulling apparatus. More particularly, the present invention relates to a continuous oxidation process wherein an oxygen-containing gas is continuously injected into a crystal pulling apparatus to continuously oxidize silicon monoxide, silicon vapor, and hypostoichiometric silicon dioxide as it is produced.
Single crystal silicon which is the starting material for most processes for the fabrication of semiconductor electronic components is commonly prepared with the so-called Czochralski process. In this process, a crystal pulling apparatus purged with a continuous stream of argon is utilized wherein polycrystalline silicon (“polysilicon”) is charged to a quartz crucible, the polysilicon is melted, a seed crystal is immersed into the molten silicon and a single crystal silicon ingot is grown by slow extraction.
During the crystal growth process, substantial amounts of silicon containing compounds such as gaseous silicon monoxide (SiO(g)) and silicon vapor (Si(g)) are produced and released into the atmosphere in the apparatus. SiO(g) is evaporated from the melt due to the enriching with oxygen through the dissolution of the crucible by the silicon melt, as well as the interaction of the crucible with the graphite susceptor supports. Additionally, the vapor pressure of the Si(g) over the silicon liquid at the silicon melting point is about 0.5 Torr which may account for a moderate quantity of Si(g) being produced during ingot growth. Because SiO(g) is extremely unstable, it readily reacts with other molecules of Sio(g) produced from the crucible dissolution to produce silicon dioxide (solid) (SiO
2
(s)) and silicon (solid) (Si(s)). However, because the amount of available oxygen within the crystal pulling apparatus is limited, a substantial amount of the SiO
2
(s) which is formed is oxygen deficient, or hypostoichiometric. Also, the Si(g) evaporated from the melt which may condense on the hot zone exhaust system parts is very reactive with oxygen.
The mixture of hypostoichiometric SiO
2
(s) and condensed Si(g) produced as a by-product in the crystal pulling apparatus is a major problem in the crystal pulling industry as it tends to stick and become attached to many parts of the pulling apparatus and exhaust system. When the apparatus and exhaust system are opened to the atmosphere after the ingot is grown, and the hypostoichiometric SiO
2
(s) is mixed with large amounts of oxygen, it can smolder, burn and release substantial amounts of heat which can cause serious damage to internal parts of the apparatus as well as the exhaust system. Furthermore, if sufficient amounts of hypostoichiometric SiO
2
(s) are present in a dust form, an explosion and resulting rapid over pressurization of the pulling apparatus can occur and cause substantial damage to the apparatus and workers.
Conventionally, the dangers of rapid over pressurization of the apparatus and burning of parts due to the reaction of hypostoichiometric SiO
2
(s) and oxygen has been controlled through the use of a post-run oxidation step which consists of backfilling the evacuated crystal puller with an oxygen-containing gas such as air at a slow rate over a period of up to about 24 hours. The oxygen in the air slowly reacts with and oxidizes the hypostoichiometric SiO
2
(s) to produce SiO
2
(s) containing sufficient oxygen and reduces the risk of over pressurization. By adding time to the process cycle, the throughput of the pulling apparatus is significantly reduced. Additionally, because up to about 95% of the hypostoichiometric SiO
2
(s) accumulation is on water cooled surfaces or exhaust piping several feet from the hot zone and hence near room temperature, the oxidation rate of the accumulated oxide is much less efficient than desired and some risk to equipment and workers may still exist.
Therefore, a need exists in the semiconductor industry for an efficient process that can substantially eliminate the dangers of hypostoichiometric SiO
2
(s) without decreasing the throughput of the crystal pulling apparatus.
SUMMARY OF THE INVENTION
Among the objects of the present invention, therefore, are the provision of a process for reducing the amount of hypostoichiometric silicon dioxide in a crystal pulling apparatus; the provision of a process for increasing overall throughput of grown ingots; the provision of a process for continuously oxidizing hypostoichiometric silicon dioxide as it is produced in a crystal pulling apparatus; the provision of a process for introducing oxygen near the hot zone to oxidize hypostoichiometric silicon dioxide without causing perfect structure loss of the growing crystal; and the provision of a process which eliminates the post-run oxidation step.
Briefly, therefore, the present invention is directed to a process for reducing the amount of hypostoichiometric silicon dioxide in a crystal pulling apparatus through continuous oxidation of silicon compounds produced during production of silicon ingots. The process comprises continuously injecting an argon gas stream into the apparatus above the hot zone during ingot growth such that the argon stream flows downwardly within the apparatus through the hot zone and into an exhaust tunnel and continuously injecting an oxygen containing gas through an inlet in the exhaust tunnel in the apparatus at a position downstream from the hot zone relative to the argon gas flow to continuously oxidize silicon monoxide, silicon vapor and hypostoichiometric silicon dioxide produced during ingot growth.
The invention is further directed to a process for reducing the amount of hypostoichiometric silicon dioxide in a crystal pulling apparatus through continuous oxidation of silicon compounds produced during production of silicon ingots. The process comprises continuously injecting an argon gas stream into the apparatus above the hot zone during ingot growth such that the argon stream flows downwardly within the apparatus through the hot zone and into an exhaust tunnel and continuously injecting an oxygen containing gas through an inlet in the exhaust tunnel in the apparatus at a position downstream from the hot zone relative to the argon gas flow to continuously oxidize silicon monoxide, silicon vapor and hypostoichiometric silicon dioxide produced during ingot growth without allowing sufficient oxygen to enter the hot zone and cause perfect structure loss in the growing ingot.
The invention is further directed to a process for reducing the amount of hypostoichiometric silicon dioxide in a crystal pulling apparatus through continuous oxidation of silicon compounds produced during production of silicon ingots. The process comprises continuously injecting an argon gas stream into the apparatus above the hot zone during ingot growth such that the argon stream flows downwardly within the apparatus through the hot zone and into an exhaust tunnel and continuously injecting an oxygen containing gas through an inlet in an exhaust tunnel in the apparatus at a position downstream from the hot zone relative to the argon gas flow to continuously oxidize silicon monoxide, silicon vapor and hypostoichiometric silicon dioxide at a temperature of at least 600° C. produced during ingot growth without allowing sufficient oxygen to enter the hot zone and cause perfect structure loss in the growing ingot.
The invention is further directed to a crystal pulling apparatus for continuously oxidizing silicon monoxide, silicon vapor, and hypostoichiometric silicon dioxide produced during a crystal growing process. The apparatus comprises a housing, a hot zone containing a crucible, and a gas inlet located above the hot zone for allowing an argon gas stream to enter the apparatus and flow through the hot zone and into an exhaust tunnel to purge hot exhaust gases from the hot zone. The apparatus further comprises a gas inlet in an exhaust tunnel downstream from the hot zone relative to the direction of flow of the argon gas for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Continuous oxidation process for crystal pulling apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Continuous oxidation process for crystal pulling apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuous oxidation process for crystal pulling apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604625

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.