Continuous monitoring system

Data processing: measuring – calibrating – or testing – Measurement system – Performance or efficiency evaluation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S540000, C340S635000, C340S649000, C324S557000

Reexamination Certificate

active

06205408

ABSTRACT:

BACKGROUND OF THE INVENTION
Static electricity creates problems in the electronics and other industries, particularly with the advent of integrated circuits and other microelectronic components. Components such as integrated circuits, for instance, may be disabled or destroyed by over-voltages or power density resulting from the discharge of static electricity. Certain junctions in such circuits can be destroyed by overvoltages as low as 25 volts, which radically changes the doping structure in their lattices. Power densities resulting from excessive potential and imperfections in circuit layout or structure can vaporize or radically alter the silicon substrate and thus impair or destroy a circuit's performance. Yet a person walking on carpet on a dry day can accumulate as much as 30,000 volts, and he or she can triboelectrically generate thousands of volts by simply changing his or her position in a chair or handling a styrofoam cup.
Such a person can inadvertently discharge such static potential into a circuit or component by touching it and causing over-voltage or excessive power density. Additionally, the potential in such a person's body can induce a charge in a circuit that can later cause over-voltage or excessive power density when the circuit is subsequently grounded.
Those in industries in which integrated circuits and other microelectronic components are handled or assembled may take measures to limit the failure rate of those circuits and components by attempting to keep them as well as their environment at zero electrical potential. Such measures include providing workers and work stations with electrostatic discharge (ESD) devices, such as antistatic carpet, conductive or dissipative grounded desk top work surfaces, hot air ion generators which emit ions to neutralize static changes, grounding wrist straps, heel grounders and other garments to keep workers at zero potential.
The situations in which grounding wrist straps are used heighten the importance of their being effective, reliable, and predictable. The person working on microelectric components or integrated circuits may be completely unaware that he or she has accumulated static electrical charges, and may therefore unknowingly be in a position to disable circuits on which he or she is working or which he or she is handling. If the wrist strap is loose or has been removed or if it is not functioning properly for other reasons, the worker may be unaware that electrical discharges transmitted from his or her fingers are disabling the circuits. (A typical person cannot sense a static electrical discharge of less than approximately 3,500 volts.) No one may discover that the circuits have been disabled or damaged until hours, days or weeks later, when the circuits have been placed in components or devices which fail in the field. Removal and repair or replacement of these circuits once in the field is far costlier than avoiding potential failure while the worker is handling the circuits.
Various procedures for ensuring the proper use and efficacy of ESD devices have been developed. For instance, wrist strap or heel grounder testers have been developed which allow a worker to verify the efficacy of the device. These testing units may be used to continuously monitor the efficacy of the ESD device. Thus, each work station may be equipped with an ESD device monitor which continuously monitors the efficacy of one or more ESD devices and warns the worker in the event of a failure.
Such testing units are of little value, however, if they are not used in a manner which creates confidence that the ESD devices are being tested in a manner that ensures reliable function. Thus, protocols may be established for auditing the monitoring of the ESD devices. For instance, industry standards, such as ISO 9000, may require that manufacturers document any claims that their workers use and verify the efficacy of ESD devices. Thus, where continuous monitoring is used, a record must be made of each occasion on which the failure of an ESD device is detected. These records are then used to certify the products under the applicable standard. Other industry standards or internal operating procedures also may require documentation of ESD auditing programs.
One problem created by conventional methods for recording and tracking of ESD auditing programs is the generation of large amounts of printed documents or records. While such documentation is required, the records can be so bulky and voluminous as to make them practically useless for analytical purposes. Thus, in order to provide the data that can be used in meaningful ways, the records must be entered by hand into a computer database—an expensive and time consuming process. Furthermore, maintaining such records by hand can introduce errors resulting from mis-recording or worker inattention. This is particularly true where continuous monitoring is required, as brief interruptions in ESD device operation may go unnoticed.
Another limitation of manual data entry is the lack of real-time availability of the data to the program supervisor. Currently, if a supervisor wishes to determine whether all ESD devices are operating properly, he or she must go to each testing station and examine the monitoring device and the log book. In a large fabrication facility, the examination of each work station may be difficult or even impossible to do in a short time. Thus, a supervisor has no way of determining which ESD devices are functioning properly at any given time.
In the past, efforts have been made to connect continuous monitoring stations to a central monitoring system. These efforts were unsuccessful, because there was no way to control the flow of data from the continuous monitoring stations to the central monitoring system — data from multiple stations “collided” on its way to the central system, resulting in garbled, and therefore useless, data. Thus, it would be desirable to provide a system for continuously monitoring the efficacy of ESD devices which allows the monitoring data to be collected and analyzed in a central location in a real-time or virtually real-time manner.
SUMMARY OF INVENTION
The present invention provides automated systems for performing continuous monitoring of ESD devices and recording the time and duration of any ESD device failures for an ESD auditing program. Systems according to the present invention comprise at least one ESD device monitoring station. The monitoring station may provide functionality for identifying a work station and each of the ESD devices being used at that station. A communication system allows the testing unit to communicate with a central computer or processor which collects, stores and allows the manipulation of the test data.
The worker connects his or her ESD device into a monitor provided at the workstation. Other ESD devices associated with the workstation may also be connected to the monitor. The monitor provides a continuous indication of the status of the ESD devices. In the event of a device failure, the monitor may present an audible and/or visual alarm to the worker. The worker may then take corrective action as appropriate. At the same time, a central computer continuously polls a hub connected to one or more monitors and displays the status of the ESD devices. In the event of an ESD device failure, data relevant to the failure, such as time and duration, is recorded in a log. Thus, a supervisor may monitor the ESD devices in real time and detailed records of any failures over a given period of time may be recorded.
Automated auditing systems of the present invention present several advantages over the conventional method of performing and documenting the monitoring of ESD devices. The automated system eliminates the bulky and voluminous logs associated with a manual recordation system. Furthermore, because the data is recorded on a central device, the likelihood of lost logs and the need for a separate log at each monitoring station is eliminated. The worker need not even record the failure, but may instead devote his

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Continuous monitoring system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Continuous monitoring system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuous monitoring system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2447390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.