Continuous ditch excavator

Hydraulic and earth engineering – Subterranean or submarine pipe or cable laying – retrieving,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C037S350000, C037S417000

Reexamination Certificate

active

06305879

ABSTRACT:

TECHNICAL FIELD AND BACKGROUND OF THE INVENTION
This invention relates to a continuous ditch excavator.
Many types of development projects, including residential and commercial construction and irrigation, as well as underground utility installation involving the burying of pipe or conduit, involve ditch excavation. Such ditches must frequently be angled and/or curved in order to stay within the confines of the property owned by the person authorizing the excavation or to avoid encountering natural and artificial barriers such as waterways, desired wooded areas, and preexisting underground utility installations.
Prior art ditch excavators typically include augers or other digging implements that are mounted on or near the front of the excavator. This arrangement precludes continuous excavation at corners and curves in the ditch, because such excavators must cease excavation and reorient themselves whenever corners and curves in the ditch are desired. This interruption becomes more and more pronounced as the angle of the turn becomes greater; turns of 90 to 180 degrees are especially troublesome. This problem results not only in temporary work stoppage, but also in potentially inconsistent ditches. The width and depth of the ditch, as well as the pitch of the ditch walls, may vary with each retraction, reorientation, and re-engagement of the excavator at turns in the desired ditch path. In addition, with the necessary reorientation of the excavator comes the risk of misguiding the excavator during reorientation such that the integrity of the portion of the ditch that has already been excavated is compromised or damaged.
The present invention solves this problem by providing a continuous ditch excavator with a substantially centrally-disposed auger that enables the excavator chassis to rotate about the auger, thereby allowing the excavator to make turns at any angle without the need for retracting the auger from the ditch. Such a design ensures ditch consistency and integrity as well as avoidance of work stoppages caused by excavator retraction and reorientation.
SUMMARY OF THE INVENTION
Therefore, it is an object of the invention to provide a continuous ditch excavator.
It is another object of the invention to provide a continuous ditch excavator that may excavate ditches having corners and curves without having to retract the auger or other digging implement from the ditch.
It is another object of the invention to provide a continuous ditch excavator that minimizes work stoppages associated with retraction, reorientation, and re-engagement of the excavator at corners and curves in the desired ditch path.
It is another object of the invention to provide a continuous ditch excavator that preserves the integrity of ditch walls at curves and corners in the ditch.
It is another object of the invention to provide a continuous ditch excavator that helps ensure consistency of ditch width and depth.
It is another object of the invention to provide a continuous ditch excavator that generally eases and expedites excavation of ditches having corners and curves, especially when the ditch path includes turns of 90 to 180 degrees.
It is another object of the invention to provide a continuous ditch excavator that may be controlled by a human operator from a position either aboard or separate from the excavator or by automation.
It is another object of the invention to provide a continuous ditch excavator that prevents soil removed from the ground by the auger from falling into the ditch as the auger is raised out of the ditch.
It is another object of the invention to provide a continuous ditch excavator that provides a bin for containing soil removed from the ground and means for emptying the soil containment bin when desired.
These and other objects of the present invention are achieved in the preferred embodiments disclosed below by providing a continuous ditch excavator including a chassis having a forward portion and a rear portion, first and second motive means carried by the chassis in laterally spaced-apart relation to each other for cooperatively driving the chassis along a ground surface, the first and second motive means defining a centrally-disposed excavation work area therebetween, an excavating auger mounted on the chassis in the excavation work area forwardly of the rear portion of the chassis and rearwardly of the forward portion of the chassis for penetrating and excavating a ditch in the ground as the chassis is driven along the ground, the auger defining a pivot point about which the first and second motive means are adapted to rotate the chassis to control the direction of ditch excavation, motor means for driving the first and second motive means and rotating the auger, and control means for controlling the excavator, whereby rotating the chassis about the pivot point defined by the auger permits changes in the direction of ditch excavation in correlation with the change in direction of the chassis.
According to one preferred embodiment of the invention, the auger is mounted in a substantially vertical position.
According to another preferred embodiment of the invention, the motor means is adapted for raising and lowering the auger.
According to yet another preferred embodiment of the invention, the motor means includes an engine mounted on the chassis for driving the first and second motive means and a hydraulic motor mounted on the chassis for rotating, raising, and lowering the auger.
According to yet another preferred embodiment of the invention, lift means are mounted on the chassis for raising and lowering the auger.
According to yet another preferred embodiment of the invention, the first and second motive means comprise caterpillar tracks.
According to yet another preferred embodiment of the invention, a containment bin is mounted on the chassis in proximity to the auger for receiving soil removed from the ground by the auger.
According to yet another preferred embodiment of the invention, emptying means are provided adjacent to the containment bin for emptying the contents of the containment bin.
According to yet another preferred embodiment of the invention, a containment shield resides adjacent to the auger for preventing the soil removed by the auger from falling back into the ditch as the auger is raised out of the ditch.
According to yet another preferred embodiment of the invention, the containment shield includes a first shield component proximal to the forward portion of the chassis and a second shield component proximal to the rear portion of the chassis for partially surrounding the auger as it is raised and lowered into and out of the ditch.
According to yet another preferred embodiment of the invention, the first and second shield components are complementary, spaced-apart, arcuate plates partially surrounding the auger.
According to yet another preferred embodiment of the invention, the control means includes an operator cab containing the control means and mounted on the chassis for accommodating an operator.
According to yet another preferred embodiment of the invention, the control means includes a plurality of direction and speed controls in the operator cab for manipulating the excavator.
According to yet another preferred embodiment of the invention, the control means includes a sensor on the excavator for receiving control signals from a remote control unit comprising speed and direction controls, and a processor on the excavator for interpreting the control signals received from the remote control unit by the sensor and for directing the excavator to execute operations included in the control signals.
According to yet another preferred embodiment of the invention, the control means includes a distance and direction sensor mounted on the chassis for sending and receiving information concerning movement of the first and second motive means, a distance and direction processor mounted on the chassis for interpreting the information received by the distance and direction sensor and executing directions contained therein, and an elevation monitor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Continuous ditch excavator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Continuous ditch excavator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuous ditch excavator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2608701

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.