Metal founding – Process – Shaping liquid metal against a forming surface
Reissue Patent
2001-09-25
2004-07-13
Lin, Kuang Y. (Department: 1725)
Metal founding
Process
Shaping liquid metal against a forming surface
C164S430000, C164S431000, C164S436000, C164S481000, C164S491000
Reissue Patent
active
RE038555
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to continuous casting apparatuses and methods.
Continuous casting of metals and metal alloys of various kinds, both ferrous and nonferrous, has been undertaken for many years. The majority of the prior art discloses machines in which casting is performed by discharging molten metal between a pair of rollers which are continually cooled. It is possible to cast vertically downward, downward at an angle, or horizontally.
Continuous casting of metals is undertaken by two common methods that are similar in some respects. Briefly, continuous casting is performed by means of endless members e.g. mold blocks mounted on or forming continuous chains, or endless belts with moving side dams disposed between the belts. The endless members which are typically disposed horizontally or slanted at a small angle from the horizontal serve as the mold for the cast metal, e.g., billet, slab, sheet, plate, or strip. The endless members, moving in non-circular paths, come together tangentially in a casting region to form a casting mold channel and stay together long enough so that the metal is solidified enough to support itself after which the endless members separate and are carried back to the beginning of the casting region. This method of casting has proved efficient and economical particularly in the casting of shapes such as slab, plate or strip, which may be used as the finished product, or if desired, the shape may be subjected to reduction rolling as it emerges from the horizontally disposed casting machine.
As stated, these generally horizontally disposed continuous casting machines are predominantly of two types. The first type utilizes a pair of continuous belts which approach each other tangentially to form a movable mold therebetween. As the molten metal is introduced between the belts, the belt is cooled. The cooling is, however, somewhat inefficient, and the thickness of the strip varies because of the lack of stiffness in the belt. To prevent variations in the thickness and shape of the strip, the molten metal must be supplied to the mold at a low pressure which effects the casting process and causes surface and shape problems as well as deficiencies in the metal structure.
To overcome the inefficiencies in cooling, thickness, and cast metal quality control, the belt is replaced with a continuous chain in the second type of caster which has consecutive mold blocks attached to or actually forming the chain. The mold blocks provide a structure which can be externally cooled, internally cooled, or both externally and internally cooled. This structure efficiently cools the metal being molded between the caster blocks, and the continuous caster utilizing the mold blocks also provides increased stiffness which results in a uniform thickness of the strip. This process is, however, subject to other deficiencies. Where the consecutive mold blocks abut each other, molten metal can flow in between the blocks and solidify there creating protrusions extending from the molded metal across its width. These protrusions are commonly referred to as fins. The presence of fins on the molded strip interferes with the subsequent formation processes, such as rolling, to which the molded metal might be subjected.
Further, it is frequently necessary, during the casting of flat products such as sheets or strips, to adjust the width of the strip. To adjust the width of the strip, different widths of chains must be kept in stock or continuous, expensive, adjustable width side dams which are movable across the width of the blocks must be provided. Because of the weight and bulk of the chain, the change is a difficult, time consuming, and extremely costly procedure.
It has also been difficult to obtain high accuracies of strip thickness/shape with the continuous casting machines. As the molten metal moves along the length of the chain caster, the metal cools and solidifies in the mold channel. As the metal cools, the volume decreases thus changing the casting pressure applied to the metal as it solidifies in the mold channel. The metal may even lose contact with the mold channel. This slows cooling thus requiring a longer mold channel, and under some circumstances, this can lead to undesirable variations in thickness and other shape deformations. More frequently, this has adverse effects on the microstructure of the cast product.
Thus, the production of continuous cast products without fins is desirable to enhance the products fabricated from continuous casting process and increase the ability to subject the continuously cast metal to further processing. It is also desirable to change the mold width of a continuous caster utilizing a chain without changing the chain. Further, it is desirable to maintain the casting pressure on the metal as it solidifies. The production of continuous cast products without fins, shortening the stop time of a width change, changing the mold width without changing the chain, and controlling the casting pressure, translate directly into increased use of continuously cast products and a reduction of manufacturing expenses for continuously cast products.
BRIEF SUMMARY OF THE INVENTION
There is, therefore, provided in the practice of this invention a novel continuous caster comprising a headbox and a mold channel defined between two endless chain assemblies. The headbox is positioned at an opening of the mold channel, and molten metal is fed through the headbox to the mold channel. Each chain of the two endless chain assemblies has a protrusion at an opposite side of the chains defining a width and depth of the mold channel. At least one of the endless chain assemblies is movable relative to the other chain assembly, so that the width of the mold channel can be adjusted.
In a preferred embodiment, both of the chain assemblies are movable with respect to each other, so that the metal being cast is maintained centrally in the chain caster when the width of the mold channel is adjusted. In the preferred embodiment, the caster further comprises two endless belt assemblies which correspond to the chain assemblies. Each belt assembly operates externally from the corresponding chain assembly to create a smooth mold channel which produces a casted product without fins. The belts can have the same width as the mold channel which requires the casting process to be stopped so that the belts can be changed and the width of the mold channel changed. The relatively light and easily removable belts can be changed in a substantially shorter period of time than the chains. The belts can also have a width greater than the width of the mold channel to adjust the width of the mold channel without changing the belt.
The invention is further directed to a novel continuous caster comprising first and second mold assemblies having first and second moving chains and belts moving in first and second closed chain and belt paths, respectively. The chain paths are internal relative to the belt paths and the corresponding belt and chain paths join over at least the part of their paths where the first and second paths pass in close proximity to define a mold channel. Because the belt operates externally from the chain, the smooth belt defines the surface of the mold channel and prevents finning. A headbox and tip are provided at the opening of the mold channel to supply molten metal to the mold channel.
In a preferred embodiment, the caster further comprises a tensioning mechanism attached to the belts whereby the belts are tightened and held tightly against the chain. The belts are preferably coated with a heat resistant material which acts as a mold release, non-wetting agent, and heat transfer moderator. Further, cooling systems are provided for each mold assembly. Each cooling system is associated with both the belt and chain of the respective mold assembly thereby reducing the amount of cooling required.
The invention is still further directed to a novel continuous caster comprising a plurality of mold assemblies. At least one of the mold assemblies comprises
Braun Curt
Post Pieter F.
Romanowski Christopher A.
Speed Bobby Bruce
Christie Parker & Hale LLP
Hunter Douglas Industries B.V.
Lin Kuang Y.
LandOfFree
Continuous chain caster and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Continuous chain caster and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuous chain caster and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3222782