Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – With scrubbing or scouring component
Reexamination Certificate
2002-04-18
2004-01-06
Gupta, Yogendra N. (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
With scrubbing or scouring component
C510S395000, C510S418000, C510S421000, C510S426000, C510S245000, C510S256000
Reexamination Certificate
active
06673762
ABSTRACT:
TECHNICAL FIELD
The invention relates to a contaminated surface polishing-washing detergent composition for removing the particles of oxides formed upon working and the particles of removed burrs and cutting metal chips that are left on precision-worked surfaces such as of turbine blades.
BACKGROUND OF THE INVENTION
The turbine blades are formed, by electrical discharge machining, on the surfaces thereof with a concave-shaped pattern receiving a fluid. At the peripheries of the discharge-machined, concave-shaped pattern, there are left the particles of oxides of an alloy used as a base material and the particles of removed burrs and cutting metal chips. In order to remove the particles of the metal oxides of the alloy and the burrs and the cutting metal chips, it has been usual that polishing-washing is carried out by utilizing a water jet or ultrasonic waves while using a polishing media.
The polishing media is in the form of fine particles and is selected from silica, calcium oxide, aluminium oxide, silicon nitride, silicon carbide, cesium oxide, synthetic or natural diamond, metal silicides, tungsten oxide, titanium nitride, titanium oxide, other types of materials that are harder than an alloy used as a constituent base material for turbine blade, and mixtures thereof.
However, there arise the problems that if a hard polishing media such as of diamond particles is used, the particles may be intruded into the surfaces of the base material for the turbine blade, and that polishing may not proceed satisfactorily when using a relatively soft polishing media.
Further, the particles of metal oxides of an alloy used as a base material for the turbine blade or the particles of removed burrs and the cutting metal chips have substantially the same specific gravity as the polishing media, with the attendant problem that it is difficult to separate the particles of the metal oxides and the particles of the removed burrs and the cutting metal chips from a polishing media solution composition containing the particles of the metal oxides of the alloy and the particles of the removed burrs and cutting metal chips. Further, since the specific gravity of those media is high in respect to water as a fluid, there is the problem that upon making a mixed fluid containing the media, it is difficult to obtain a mixture in which the media keeps mixed uniformly in the long term since the media starts to separate indefinably due to different specific gravity and depending on the rate of the media contained in the mixture.
SUMMARY OF THE INVENTION
In the practice of the invention, there is provided a contaminated surface polishing-washing detergent composition using a hard, light RB ceramic and/or CRB ceramic, which composition is re-usable by recycling as a polishing media solution composition after efficient polishing-washing of the surface of a precision-worked base material and removal of the particles of metal oxides and the particles of removed burrs and the cutting metal chips in a simple way from the polishing media solution composition after the polishing-washing by utilizing the difference in specific gravity.
The contaminated surface polishing-washing detergent composition of the invention could solve the above problems, in which an RB ceramic and/or CRB ceramic in the form of a fine power whose bulk specific gravity ranges about 1.25 to 1.35 (g·cm
−3
) (the bulk specific gravity is measured such that the test piece described in JIS R 1601.4 is subjected to the measuring method of bulk specific gravity described in JIS R 7222.7 and it is to be noted that the RB ceramic and/or CRB ceramic is so porous that only a bulk specific gravity can be measured) is used as a polishing media.
More particularly, the RB ceramic and/or CRB ceramic is porous, has such a hardness that the Vickers' hardness is about 400 or over, can be divided into a fine powder having a size of approximately 1 &mgr;m, is not so hard as diamond and is not thus intruded into an alloy in the surfaces of the base material, and is small in bulk specific gravity. Accordingly, if such a ceramic is dispersed in an aqueous surfactant solution having substantially the same specific gravity to provide a polishing media solution composition, the particles of metal oxides and particles of removed burrs and the cutting metal chips can be settled only by allowing the solution to stand after polishing-washing. The separation of the resultant precipitate by filtration makes it possible to provide a refreshed polishing media solution composition for recycling.
The RB ceramic and CRB ceramic used in the invention are those materials prepared according to the following process.
The porous carbon material that is obtained by using rice bran produced at 900,000 tons per year in Japan and at 33,000,000 tons per year in the world is known according to the studies made by Kazuo Hokkirigawa, one of co-inventors of this application (see “Functional Materials” May 1997, Vol. 17, No. 5. Pp. 24 to 28).
In this literature, reference is made to a carbon material (hereinafter referred to as RB ceramic) and the preparation thereof, in which the material is obtained by blending and kneading defatted bran derived from rice bran and a thermosetting resin, followed by drying a compact obtained by pressure forming and subsequently baking the dried compact in an atmosphere of an inert gas.
According to this method, the difference in contraction ratio between the size of the pressure formed compact and the size of the final molded compact obtained by baking in the inert gas atmosphere is at 25%, which makes it substantially difficult to make a precise molded compact. A ceramic (CRB ceramic) improved in the ratio has now been developed. The RB ceramic and CRB ceramic individually have the following general properties.
DETAILED DESCRIPTION OF THE INVENTION
The polishing media used in the invention should comprise fine particles of the RB ceramic and/or CRB ceramic. In the practice of the invention, conventional polishing media may be used in combination.
The polishing media used in combination include silica, calcium oxide, aluminium oxide, silicon nitride, silicon carbide, cesium oxide, synthetic or natural diamond, a metal silicide, tungsten oxide, titanium nitride, titanium oxide, other types of materials that are harder than a base material constituting a body to be worked, and mixtures thereof.
The polishing-washing composition used in the invention can be used for a polishing-washing method using a water jet or ultrasonic waves. Both polishing-washing methods are well known in the art and are not described in detail herein.
With the contaminated surface polishing-washing detergent composition of the invention, when a dispersion medium containing polishing media and obtained after polishing-washing is repeatedly reused, the difference in specific gravity is utilized, and thus, the dispersion medium solution is allowed only to stand, whereupon the particles of metal oxides formed during the course of working and the particles of removed burrs and the cutting metal chips settle from the dispersion medium solution containing the polishing media. The resultant precipitate is removed by a method such as filtration to obtain a fresh polishing media solution composition, which can be recycled.
The polishing media used in combination, such as silica, calcium oxide, aluminium oxide, silicon nitride, silicon carbide, cesium oxide, synthetic or natural diamond, a metal silicide, tungsten oxide, titanium nitride, titanium oxide or the like, cannot be removed only by allowing the solution to stand, and is supplemented in an amount corresponding to that contained in the precipitate, followed by recycling in a similar way.
As is particularly shown in
FIG. 1
, a polishing media solution composition
2
is pumped up from a storage tank
1
, in which the polishing media solution composition
2
is placed, by means of pump
3
, and worked portions
6
of a body
5
to be worked are subjected to polishing-washing by means of a water jet gun
4
. The polishing media so
Akiyama Motoharu
Hokkirigawa Kazuo
Yoshimura Noriyuki
Flynn ,Thiel, Boutell & Tanis, P.C.
Gupta Yogendra N.
Minebea Co. Ltd.
Petroncio John M
LandOfFree
Contaminated surface polishing-washing detergent composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Contaminated surface polishing-washing detergent composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Contaminated surface polishing-washing detergent composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3214739