Contaminated sediment remediation vessel

Excavating – Beneath a body of water – Suction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C037S320000, C037S345000, C405S071000, C405S204000, C405S279000, C210S257200

Reexamination Certificate

active

06640470

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This application relates to a process for isolating sections of the lakes, reservoirs, rivers, streams, and other water bodies so that contaminated sediments may either be removed or treated in-situ, while at the same time containing and preventing the release of particulate and soluble matter to the ambient water environment.
BACKGROUND OF THE INVENTION
Removal of sediments that accumulate on the bottom of natural and artificial water bodies is commonly practiced to permit navigation of ships and/or to maintain designated water depths. This type of sediment removal is commonly referred to as maintenance or navigational dredging. Sediments are sometimes removed to clean up the bottom of these water bodies when such sediments are found to be contaminated and pose a threat to public health and/or the ecosystem. This type of sediment removal is commonly referred to as environmental dredging. In some cases the objectives of the sediment removal activity are both maintenance and environmental. The in-situ treatment of contaminated sediments to render contaminants inert without the need to remove the sediments from the waterway is another remediation approach that is being researched as an alternative to dredging. At the present time, however, sediment removal or dredging is the primary remediation method commercially practiced.
Current methods of maintenance or environmental dredging can be divided into two general categories. They include mechanical dredging and hydraulic or vacuum dredging. The fundamental difference between these categories is the equipment used and ultimately the form in which the sediments are removed. Mechanical dredges typically remove the sediments directly with clamshell-type buckets at a relatively low liquid to solid ratio (i.e., relatively little water is entrained in the sediments compared to hydraulic dredging operations). Hydraulic or vacuum type dredges agitate the bottom channel to dislodge the sediment, and pump (vacuum) the sediment from the waterway. In hydraulic dredging operations the sediment is transported in a slurry with water acting as the transportation medium. This results in a water sediment mix with a high liquid to solid ratio. The sediment in the slurry must later be segregated from the water carrier. This is typically accomplished using large impoundment areas where the sediment is extracted by settling and the water (effluent) is returned to the originating waterway.
The removal of bottom sediments, whether by a mechanical or by a hydraulic dredging operation, involves some form of raking, grabbing, penetrating, cutting, or hydraulically scouring of the waterway or channel bottom. During such operations, sediments are readily suspended into the water column, dispersed and lost. In addition to sediment loss due to sediment disturbance and resuspension, in the case of mechanical dredging operations, sediment loss will occur when the bucket leaks sediments due to improper bucket closure resulting from debris stuck in the bucket, inadequate bucket sealing mechanisms, and the displacement of water contained within the bucket that occurs when solids enter the bucket during the excavation. While hydraulic dredging operations may have the advantage of a vacuum system that can assist in capturing some resuspended solids during bottom scouring operations, the large volumes of water that must be withdrawn and processed during such operations limit the feasibility of hydraulic dredging operations to areas where large impoundments are available. In addition, the presence of tides and currents can be expected to significantly reduce the efficiency of capture of resuspended solids by vacuum dredges when compared to operations that occur in quiescent waters.
Sediment resuspension and loss during dredging is a particular concern in environmental dredging operations where sediments are contaminated and the resuspension and dispersion of such sediments can result in ecological and human health impacts. This concern is underscored by the fact that most contaminants are generally associated with or bound to the fine particles, which are also those particles that are most easily resuspended and dispersed during the dredging operation. In addition to particulate resuspension, the potential release of soluble contaminants that may be present in the pore space of contaminated muds or may be subject to dissolution from the mud particle upon resuspension during dredging operations is also a concern.
Other problems associated with environmental dredging operations include the lack of suitable methods to monitor the actual loss of sediment that occurs during the excavation process, the lack of appropriate methods to monitor and ensure that the cleanup is being properly effected, and the absence of suitable methods to make certain that the handling of such sediments, during marine-to-land transfer and land-based transfer of such materials, do not result in liquid leakage or loss of sediments.
Current approaches for monitoring sediment loss during the excavation typically involve the use of discrete upgradient and downgradient subsurface sampling stations. Water samples collected at these stations are used to assess the increase in solids or turbidity loading to the waterway during the excavation. Given the unpredictability of subsurface currents, the discontinuous dredging operation, and discrete (spike) loadings that can be expected during dredging operations, the collection of representative samples is difficult. In addition, a determination of sediment loss can only be made after the release has already occurred.
To achieve target cleanup goals at a contaminated sediment site, due to the resuspension and the redeposition of sediment that occurs during conventional mechanical and hydraulic dredging operations, second and third passes to clean the contaminated area are routinely common. Even with multiple passes of a contaminated area, targeted specifications are still difficult to achieve. Current methods to assess the effectiveness of the cleanup of the subsurface sediments after the excavation typically involve the collection of core samples at discrete locations in the dredge area. Due to the expected variability in the spatial distribution of contamination in bottom sediments, particularly after the sediment is disturbed in a dredging operation, the collection of representative bottom sediment samples is also a difficult proposition. If the remediation effort has not met the required specifications, dredging equipment must be remobilized and returned to the location for additional cleanup at significant expense.
The removal and management of contaminated sediments during environmental dredging operations is best accomplished by collecting the sediments in a secure manner, dewatering the sediments, and transferring the sediments in such a way that there will be little risk for spills or loss of material. In mechanical dredging operations, sediments are typically placed in solids barges that require off-loading facilities that make use of additional cranes and buckets to remove the sediments from the solids barge for land-based management. Such operations are extremely messy and difficult to manage, and present a relatively high risk for further environmental contamination. Hydraulic dredging operations, as previously noted, require the construction of facilities for collecting the slurry and segregating the solids from the slurry, and thickening and/or dewatering the collected solids prior to transport to the disposal site. These facilities must be constructed in close proximity to the dredging operation and also increase the risk of local environmental contamination.
Most of the advances in environmental dredging technology in recent years have focused on the development of improvements in the design of buckets or vacuum dredges that tend to reduce or control the disturbance of the bottom of the waterway during the sediment excavation process (Ouwerkerk, R. and H. Greve (1994). “Developments in Dredges During the Last De

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Contaminated sediment remediation vessel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Contaminated sediment remediation vessel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Contaminated sediment remediation vessel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3118413

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.