Container transporting a syringe containing radioactive...

Special receptacle or package – For a tool – Body treatment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S507100, C976SDIG003

Reexamination Certificate

active

06722499

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to shielded containers for the transportation of radioactive sources and, more particularly, to the combination of a radiopharmaceutical pig with a sharps container capable of holding a syringe containing a radioactive drug.
In the medical industry, radioactive drugs are used for various applications, including the internal imagining of various human organs for diagnosis purposes. Over the years, the medical industry has developed many different radioactive drugs that are designed to concentrate around these human organs.
Generally, radioactive drugs are in a liquid form that is suitable for injection into a patient. Because of the radioactive characteristics of these drugs, they must be handled according to regulations promulgated by various departments of the United States government, including the Department of Transportation (DOT), the Nuclear Regulation Commission (NRC), and the Occupational Health and Safety Administration (OSHA). Accordingly, hospitals that make their own radioactive drugs must invest in the equipment and the training necessary to meet the requirements of such regulations.
Typically, a patient requires only a small dose of a specific radioactive drug. Therefore, depending on the number of patients, it is generally not economical for one hospital to maintain the staff and equipment to make the radioactive drugs required by that hospital's patients. Furthermore, the radioactive agents in the drugs have various half lives and lose their effectiveness after a predetermined time. Thus, if a hospital does not have the required demand, some of its unused radioactive agents may decay and become unusable. To avoid the expense of such in-house production of radioactive drugs, many hospitals now purchase each prescribed dose of a radioactive drug from an outside pharmacy.
The pharmacies which provide radioactive drugs to hospitals utilize the principles of mass production to reduce their per-unit costs. The pharmacies receive prescription orders and deliver the corresponding radioactive drugs to nearby hospitals. Each prescription is individually filled, and each dose of radioactive drug is packaged in a syringe intended for a specific patient. The syringes containing the radioactive drugs must be carefully handled and delivered inside containers offering some degree of radiation shielding. Furthermore, government regulations require syringes to be disposed of in a container that shields others from the risk of injury posed by their sharp hypodermic needles. Such a container, generally referred to as a “sharps” container, typically has an inner cavity or chamber that can hold syringes. One type of sharps container has a chamber sealed by a spring biased pivoting gate to keep syringes safely inside.
One type of delivery container currently used for the delivery of syringes containing radioactive drugs is known as a radiopharmaceutical pig. The radiopharmaceutical pig typically is a two-part assembly and has an inner chamber suitable for carrying a syringe. The chamber is lined with a radiation shielding material, typically elemental lead. The exterior of the radiopharmaceutical pig is generally a plastic polystyrene shell. The polystyrene shell on one part of the radiopharmaceutical pig has elongated ridges projecting radially from the periphery of its external surface. If the assembled radiopharmaceutical pig is laid on its side, these ridges prevent it from accidentally rolling in an uncontrolled manner.
The identity of the radioactive drug within the syringe must be identified for proper use and disposal. To facilitate efficient disposal, syringes containing residuals of radioactive drugs with similar half lives are placed in the same disposal containers. To identify the radioactive drug within the syringe, labels typically are placed on the outside of the radiopharmaceutical pig and on the syringe within.
A common method for delivering the radioactive syringe is well known and includes the placement of the syringe with the required dose of a radioactive drug into the chamber of the radiopharmaceutical pig. The radiopharmaceutical pig is then delivered to the hospital where it is disassembled and the syringe is used according to other, well known, safety standards.
After the dose is injected into the patient, the syringe is referred to as “spent,” but generally contains a small amount of residual radioactive drug. In addition to the radioactive contamination, the hypodermic needle of the spent syringe is biologically contaminated from contact with the patient. In view of the threat from such contamination, the pharmacy may also offer services for the disposal of the spent syringe. Accordingly, the spent syringe can be sent back to the pharmacy for proper disposal.
If the pharmacy offers disposal services, the spent syringe may be placed back into the radiopharmaceutical pig for a return trip to the pharmacy. Once the radiopharmaceutical pig arrives at the pharmacy, an employee manually removes the syringe from the chamber of the radiopharmaceutical pig by manually opening the radiopharmaceutical pig and dumping the exposed, contaminated syringe into a suitable disposal container.
While the previously discussed apparatus and method for delivering and disposing of syringes containing radioactive drugs is generally effective, under certain conditions there may be drawbacks associated with the devices and methods designed according to the prior art. One such drawback is the additional expense arising from contamination of the radiopharmaceutical pig. During the return trip to the pharmacy, the residual radioactive drug and biological contaminants in the syringe may leak and contaminate the inside chamber of the radiopharmaceutical pig. If such contamination occurs, government regulations require that the radiopharmaceutical pig must be emptied by non-manual means (i.e., by robotic arms or their equivalent), and then disinfected with the appropriate chemicals. Such a process is expensive and, therefore, undesirable.
Another drawback is the danger of biological contamination posed by the sharp hypodermic needle of the spent syringe. As discussed above, methods and apparatus of the prior art allow the contaminated needle to become exposed during the pharmacy's disposal operations. However, under current U.S. government regulations, a spent syringe needs to be disposed of within a sharps container. Generally, if a spent syringe is not within such a protective sharps container, further handling of the syringe raises safety and regulatory concerns. Such safety concerns necessitate additional safety procedures and handling equipment that can be undesirably expensive. For example, a hospital may dispose of the syringe in sharps containers or the hospital premises. However, such a disposal system necessitates the expense of monitoring and tracking the syringes because of their radioactivity.
Yet another drawback is the lack of roll-resistance of the disassembled radiopharmaceutical pigs designed according to the prior art. As described previously, only one part of the radiopharmaceutical pig has roll-resistant ridges. Accordingly, the radiopharmaceutical pig is roll-resistant only when its two parts are secured together. Because the remaining part itself has no ridges, when the radiopharmaceutical pig is disassembled, the part without ridges may move in an uncontrolled manner causing accidental contamination or injury.
Still another drawback is associated with the durability of the polystyrene shell on the exterior of the radiopharmaceutical pig. The polystyrene shell is relatively brittle and may break or chip upon impact with other objects. If the polystyrene shell breaks, the inner liner of elemental lead can become dislodged, which may lead to the escape of dangerous radiation from the chamber of the radiopharmaceutical pig. Furthermore, if the two parts of the radiopharmaceutical pig are secured together by a threaded portion on the polystyrene shell, cracking of the shell may necessitate replacement o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Container transporting a syringe containing radioactive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Container transporting a syringe containing radioactive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Container transporting a syringe containing radioactive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3266280

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.