Fluid handling – Processes – With control of flow by a condition or characteristic of a...
Reexamination Certificate
2000-02-14
2001-05-15
Walton, George L. (Department: 3753)
Fluid handling
Processes
With control of flow by a condition or characteristic of a...
C137S403000, C137S413000, C137S430000, C141S001000, C141S198000, C222S055000, C222S067000
Reexamination Certificate
active
06230730
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention.
This invention relates generally to fill valves and containers for containing fluids and, more particularly but without limitation, to fill valves and containers for containing fluids such as propane, butane, and the like.
2. Description of the Related Art.
A common occurrence is the filling of containers with fuel or other fluids, such as portable propane tanks for barbecue equipment for example. A common procedure for filling such a tank, wherein the weight of the tank is generally visibly stamped on its outer surface, is to place the tank on scales set at a particular weight, such as twenty pounds plus the empty or tare weight of the tank. As the tank is being filled, someone watches the scales; when the balance indicates that the weight of the tank and its contents is equal to the setting on the scales, filling of the tank is terminated.
Presumably, the tank then holds the desired twenty pounds of fluid. Unfortunately, that may not be the case. For instance, the weight stamped on the tank may not be equal to the weight that would be observed if the tank were totally empty. If the tank has mud or other debris adhering thereto such that the stamped weight is less than the empty weight of the tank at the time of filling, the patron will get less than his money's worth because he will be paying for propane that he is not receiving, namely the weight of propane equal to the weight of the debris. Further, the scales may not be properly calibrated or balanced, or the scales may be set at a reading of less than tare weight plus twenty pounds, particularly if the patron is not positioned whereby the filling attendant's activities can be closely observed. As a result, the patron may again be getting less than his money's worth.
Conversely, a careless or over-busy attendant may permit a patron to fill his own tank. In that situation, the patron may be tempted to get more than his money's worth and introduce more than twenty pounds of propane into the tank, which may present a serious safety problem. The volumes of many fluids, such as butane, propane, etc., are temperature dependent. For example, the volume of a given weight of propane increases approximately one percent for each temperature increase of approximately 5-6° F. Thus, as the temperature of propane increases, the weight or mass of propane that can be placed in a given volume at a given pressure decreases. By the same token, the pressure of a given weight of a temperature-dependent fluid placed in a closed container at a given temperature may substantially increase as the temperature of the fluid increases.
As a more specific example, the pressure of liquid/vapor phase propane at −44° F. is approximately zero psig and at 100° F. is approximately 172 psig, or a pressure change of 172 psig for a temperature change of 144° F. However, a temperature increase of 1° F. in liquid-phase only propane may cause a pressure increase in excess of 500 psig.
Therefore, what is needed is a device, and a container having such a device, that determines a certain “filled” condition of the container as fluid is being introduced thereinto by detecting the containment of a predetermined weight of fluid in the container; that automatically prevents further filling of the container beyond such a “filled” condition; that prevents further filling of the container beyond such a “filled” condition even though conduct to thwart such a device is attempted by inducing inertial effects therein; that is substantially independent of the composition, pressure, and/or temperature of the fluid being introduced into and/or contained by the container; that is immune to errors in scales or tare weight of the container; that prevents introduction of fluid into the container unless the container has a essentially upright orientation; and that controls flow into the container with a pressure that has a substantially smaller magnitude than the pressure at which fluid is being introduced into the container.
SUMMARY OF THE INVENTION
An improved device, and an improved container having such a device, is provided for automatically controlling the weight of fluid introduced into the container. The device includes body structure for mounting the device to the container; a fluid-weight control mechanism including a fluid-weight detection mechanism for detecting and controlling a predetermined weight of fluid contained in the container; and a shut-off mechanism, responsive to the fluid-weight detection mechanism, configured to automatically prevent introduction of additional fluid into the container as the container contains the predetermined weight of the fluid.
The device has body structure having an input portion with a throat and a shoulder leading into a distribution cavity and one or more ports that provide fluid flow communication to the container cavity.
The shut-off mechanism has an axially displaceable partition mechanism with an upper surface. The upper surface and the shoulder are configured such that a sealing member can form a fluid-tight sealing engagement therebetween. A small port allows fluid from the throat to enter a shut-off cavity of the partition mechanism.
The fluid-weight control mechanism includes a control chamber having a shut-off member superimposed over a control port. A guide member is spaced about the shut-off member to maintain the shut-off member in alignment with the control port while permitting unhindered axial displacement of the shut-off member. The fluid-weight control mechanism also includes a trigger chamber containing one or more spheres.
The trigger chamber contains a stabilizer for each of the one or more spheres to maintain the spheres in alignment with the shut-off member as the device is disposed in a fill or open configuration. As the one or more spheres are maintained in the inline configuration with the shut-off member
143
, the shut-off member is sufficiently spaced apart from the control port such that fluid can flow therebetween.
The fluid-weight detection mechanism includes a displacer that becomes buoyant as the container contains a weight of fluid that is slightly smaller in magnitude than the weight of fluid predetermined to constitute a “filled” condition of the container. As the displacer becomes buoyant, one or more destabilizers extending axially from the displacer lift the stabilizers from the one or more spheres, allowing them to move transversely such that the inline configuration with the shut-off member collapses. Nudgers secured to the displacer may be provided to assist with such collapsing of the inline configuration. As the inline configuration collapses, the shut-off member settles against, and establishes a fluid-tight sealing engagement with the control port, preventing further fluid flow from the shut-off cavity. As a result, fluid pressure builds up in the shut-off cavity, forcing the partition mechanism upwardly such that the fluid-tight sealing engagement is formed between the upper surface and the shoulder by the sealing member, thereby shutting off fluid flow from the throat to the distribution cavity.
The displacer extends substantially the entire vertical spacing within the container as the container assumes an upright orientation. A spring member operably offsets a portion of the weight of the displacer such that the displacer is buoyant as the container assumes an upright orientation and the container contains the predetermined weight of the fluid. In addition, the fluid-weight control mechanism is configured to prevent introduction of fluid into the container as the container assumes a non-upright orientation even though the container may not contain the predetermined weight of the fluid.
The improvement includes a method for practicing the invention.
PRINCIPAL OBJECTS AND ADVANTAGES OF THE INVENTION
The principal objects and advantages of the present invention include: providing a device for preventing further filling of a container wherein the container contains a predetermined weight of fluid or fluids, an
Schoonover Donald R.
Walton George L.
LandOfFree
Container having collapsible inline fluid-weight control device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Container having collapsible inline fluid-weight control device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Container having collapsible inline fluid-weight control device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2565784