Container device with adjustable volume for immobilizing...

Receptacles – Compressor or follower plate for drawer or tray

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C220S578000

Reexamination Certificate

active

06467641

ABSTRACT:

FIELD OF THE INVENTION
The invention provides a container device for containing and immobilizing articles and workpieces susceptible to mechanical and frictional damage during transport and storage. More particularly, the invention provides a container device with an adjustable volume to hold and immobilize solder spheres used in manufacturing printed circuit boards and other electronic assemblies. The invention also provides a method of immobilizing solder spheres.
BACKGROUND OF THE INVENTION
Ball grid array (BGA) packages have become the means of choice to house and mount electronic components to larger printed circuit boards and other electronic assemblies. BGA packages typically include a plastic, ceramic or laminated substrate having a specific pattern of pads or recesses on an exposed surface which serve as contact points for mechanically and electrically connecting electronic components, such as integrated circuit chips, to circuit paths of printed circuit boards. BGA packages are mounted to printed circuit boards by surface mount technologies (SMT), including, for example, a process known as reflow soldering. Reflow soldering involves loading solder alloy spheres onto pads or recesses of BGAs and then coupling solder spheres to solder paste applied to specific areas on printed circuit boards which correspond to the array of pads or recesses of BGAs. High temperatures during reflow soldering melt spheres and cause solder to flow around contact points forming mechanical and electrical solder joints between BGAs and printed circuit boards. Accurate placement of solder alloy spheres onto arrays of pads or recesses is, therefore, a critical step in achieving satisfactory mechanical connections and electrical interconnections between integrated circuits housed within BGAs and printed circuit boards.
Automated handling systems, often referred to as pick-and-place systems, are used to load solder alloy spheres to particular soldering sites (pads or recesses) on BGAs. To confirm placement of solder alloy spheres, which can be as small as 0.004 inch in diameter, an automated vision system is often employed to determine if spheres are present at appropriate soldering sites prior to the inception of reflow soldering. An automated vision system rapidly scans an area of loaded solder pads with a high resolution camera. The high resolution camera digitizes the visual data collected to produce a gray level histogram which distinguishes the presence or absence of individual solder spheres by contrasting the bright and shiny surfaces of solder spheres with a darker, more matte background. Such a contrast between the shine of the solder sphere surfaces and the dark background establishes a pass-fail criterion that is used to determine whether a solder sphere is present at a particular site or not. A solder sphere which does not possess sufficient brightness and shine may cause the automated vision system to determine a false fail, indicating that a solder sphere is not present at a particular site, although a solder sphere has, in fact, been accurately placed at the site. The automated vision system may then indicate to an assembling system that a solder sphere is missing, whereby the assembling system may automatically reject the circuit board in question or discontinue production. For such reasons, assemblers and manufacturers of electronic components and systems prefer solder alloy spheres with bright, shiny surfaces in order to avoid erroneous rejection of electronic components and unnecessary production downtime.
It is well known that solder alloy spheres are subject to surface oxidation after manufacture due to an inherent propensity of base metals used in surface alloys, such as tin and lead, to oxidize, causing surfaces of solder spheres to darken. Of particular concern to suppliers of solder spheres is surface darkening produced during transport and storage of solder spheres due to mechanical surface damage, referred to as surface fret corrosion, which exacerbates oxidation. Surface fret corrosion primarily occurs when surfaces of solder spheres rub against each other causing portions of sphere surfaces to be removed or chipped away. Conventional glass or plastic containers are typically filled with solder spheres by mass, rather than volume, which tends to produce an empty or dead space between a bottom surface of a container lid and solder spheres contained therein. The empty space enables solder spheres to tumble about the container and to rub against each other, as well as against the side walls of the container, when the container is agitated during transport and storage. Surface fret corrosion is caused by a phenomenon called “slip-stick”, whereby mechanical and frictional energy is produced between rubbing sphere surfaces, causing surfaces to bind up rather than slip past each other. Agitation during transport of the container causes bound surfaces of spheres to suddenly release, chipping away portions of surface alloy. An accumulated loss of surface alloy by surface fret corrosion causes solder spheres to oxidize and darken.
Prior art packaging and containers which include provisions to prevent mechanical damage to articles contained therein, do not include packaging or containers which immobilize solder alloy spheres. Prior art containers are often designed for specific articles and workpieces. U.S. Pat. No. 5,709,301 discloses a storage container having a foam insert disposed in a container lid to hold and store paint brushes and paint rollers. U.S. Pat. No. 4,347,929 discloses a container for storing and transporting explosives having a foam insert attached to a lid with cut-outs to accommodate blasting caps. In more analogous art, U.S. Pat. No. 4,426,675 discloses a carrier box for storing and transporting printed circuit boards which includes strips of electrically-conductive foam material on the bottom and sides of the container to reduce vibration of printed circuit boards during transport.
Therefore, a method of immobilizing solder spheres and a container device for transporting and storing small solder alloy spheres that includes provisions to immobilize solder spheres is desirable to prevent mechanical surface damage and to eliminate surface oxidation of solder spheres.
SUMMARY OF THE INVENTION
The invention provides a container device for holding and immobilizing solder spheres used in manufacturing printed circuit boards and other electronic assemblies. The container device includes a hollow containing portion with a first terminal end and a second terminal end with at least one side wall connecting the first terminal end with the second terminal end; a removable sealing mechanism connected to the first terminal end; a piston positioned within the containing portion having a length and a width and of substantially similar shape as the containing portion; and an adjustment mechanism coupled to the piston for adjusting the position of the piston between the first and second terminal ends of the containing portion.
In a first embodiment of the invention, the containing portion and the piston are circular cylinders. The piston is of a sufficient width such that when inserted into the containing portion, the length of the piston presses substantially adjacent to the side wall of the containing portion to rigidly position the piston and to form a seal between the piston and the side wall of the containing portion. In another embodiment, the piston further includes a ridge connected to and surrounding the width of the piston. The ridge is of a sufficient height to exert a pressure of about 1 to about 5 pounds per square inch against the side wall of the containing portion to rigidly position the piston and to form a seal between the piston and the side wall. The ridge is angled at about 45 degrees toward the second terminal end of the containing portion. The angle of the ridge limits movement of the piston toward the first terminal end of the containing portion, thereby preventing movement of the piston toward the second terminal end and preventing removal of the p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Container device with adjustable volume for immobilizing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Container device with adjustable volume for immobilizing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Container device with adjustable volume for immobilizing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2984288

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.