Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – Within distinct housing spaced from panel circuit arrangement
Reexamination Certificate
2000-02-28
2001-08-21
Nguyen, Khiem (Department: 2839)
Electrical connectors
Preformed panel circuit arrangement, e.g., pcb, icm, dip,...
Within distinct housing spaced from panel circuit arrangement
C439S638000, C439S094000
Reexamination Certificate
active
06276944
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention concerns a contact unit for a card-shaped carrier element of electronic components, especially in accordance with PCMCIA standards, comprising a plug-in or insertable card-shaped housing that comprises a base plate and a cover plate that is congruent thereto at least in the transverse direction, between which is formed a slot-like insertion channel that opens on one side of the housing for accommodating a chip-card, and that at the opposing side is provided a plug-in strip, and furthermore comprising arranged parallel to the insertion channel in the housing a printed circuit board that is connected electrically to the plug-in strip and that is provided on its surface with a contact field for contact with the chip-card.
Given the increasing miniaturization in the field of computer technology, electronic components are more and more frequently arranged on or in card-shaped carrier elements with a view toward variability and transportability. Frequently encountered are carrier elements in accordance with PCMCIA standards that are cards that comprise a standard-compliant matrix-like connector strip and can accommodate a great variety of electronic components, depending on application. For instance, such cards are employed as memory expansion cards, drive cards, modem cards, etc. The interface to a data processing system (e.g., a notebook computer) is created by means of the plug-in strip, which effects a mechanical and electrical contact with a PCMCIA slot in the data processing system.
Widely used are chip-cards that have integrated circuits and comprise flush contact fields arranged for contact with, e.g., correspondingly designed reading units. Known areas of application for this type of chip-cards are currently telephone cards, authorization cards, or what are known as “SmartCards”.
Known in the current art are contact units that make it possible to connect a chip-card to a PCMCIA standard interface in a data processing system. The combination of a PCMCIA card and a chip-card contact unit that can be inserted into a corresponding modular insertion slot in a computer and then read is useful in a wide variety of applications (e.g., electronic banking, pay TV, authenticating access authorization to data networks, etc.). The disadvantage is that known chip-card readers of this type comprise an extension in the housing in the form of an enlarged insertion guide for the chip-card that extends beyond the insertion area of the modular insertion slot in the computer and that simultaneously provides a grip for the user. This means the readers are substantially longer than standard PCMCIA cards so that when in the operating position this extension projects out of the insertion slot, e.g., in a notebook computer, so that during mobile operation there is a risk that the contact unit will jam in the slot or might even be bent or damaged. This extension has thus far been considered necessary for safely guiding the chip-card into and out of the slot-type insertion channel without the risk of inserting the card improperly—that is, for introducing, retaining, and removing a chip-card.
As the usage of transportable computers (e.g., laptop and notebook computers) continues to increase, there is a technical requirement that a chip-card reader situated in the operating position be completely insertable into the slot in the computer without projecting parts interfering with usage. This becomes important, e.g., when a chip-card must be inserted for personal authorization to use the computer. Although contact elements are known that do not comprise an extension and thus correspond to the PCMCIA standard, these are provided at least partially with closed sides in order to achieve lateral guidance for the chip-card. However, a significant market requirement is that the width of a contact unit also comply exactly with the PCMCIA standard so that even the wall thickness, {fraction (1/10)}mm, for the sides does not deviate substantially from the PCMCIA standard. An additional disadvantage of very thin-walled sides is that the slightest misplacement of the chip-card when it is inserted into the contact unit can damage the card. An additional disadvantage results when the thin sides are deformed and it is then no longer possible to insert the chip-card.
The object of the invention is to further develop a contact unit for a card-shaped carrier element in electronic components such that the contact unit can be completely inserted into a PCMCIA slot in a computer without parts projecting therefrom and the object is furthermore also to ensure that proper insertion is still possible and that there is sufficient mechanical stability and simple manufacture.
This object is achieved in a contact unit of the type cited in the foregoing in that the insertion channel is continuously open over its entire length in the direction the chip-card is inserted and in that the base plate and cover plate are securely attached to each other solely in the region adjacent to the insertion channel in the direction of insertion.
The features in accordance with the invention make it possible to provide a contact unit the length and width of which comply precisely with the PCMCIA standard, e.g., Type II, and which can be inserted in its entirety into the PCMCIA slot of a computer (e.g., a notebook computer) without parts projecting therefrom. The complete insertability precludes any risk of damage, especially during transport, wherein a protective flap can also be provided that closes the PCMCIA slot when the contact unit is inserted. Of course, in this case it is not possible to leave a chip-card in the contact unit since, corresponding to the length of the region adjacent to the insertion channel, it projects from the contact unit when in its inserted position.
In a preferred embodiment of the invention, the connection of base plate and cover plate in the region adjacent to the insertion channel in the direction of insertion is also a swivelling axis relative to which the base plate and cover plate can swivel slightly such that the height of the insertion channel can be changed against the effect of a restoring force. The advantage of this is that when inserted into the insertion channel the chip-cards can be retained clamp-like in the channel. It is particularly advantageous when the height of the insertion channel declines as the distance from the connection increases when there is no chip-card inserted therein. When the chip-card is inserted into the insertion channel, the latter expands and the chip-card is held securely in the channel by means of inherent elastic return deformation. At the same time a high degree of form stability in the contact unit and compensation of production tolerances can be achieved in this manner.
Furthermore, a particular advantage is that the printed circuit board is connected at its end opposing the plug-in strip to a metal strip that is affixed to the printed circuit board in the housing and that comprises flexibly extending tabs that electrically conductively adjoin the metal cover plate. The metal strip in this manner keeps the printed circuit board level in the housing and also provides a grounded transition to the printed circuit board. With regard to this latter, it is necessary that the metal strip is connected to grounded contact surfaces in the printed circuit board. In order to facilitate simple assembly, in accordance with an additional feature of the invention the metal strip is arranged on a plastic profile that is connected to the cover and that constitutes an upper insertion guide for the chip-card. The plastic profile can be provided on its side facing the insertion channel guides for a chip-card and can be joined to the metal strip, e.g., by clamping, adhesive, or locking means.
In accordance with a further advantageous development of the invention, provided in the insertion channel is at least one spring element, the one end of which is securely joined to the cover plate and the other, free end of which can be detachably attached to the base
Hyeon Hae Moon
Nguyen Khiem
Robert W. Becker & Associates
Stocko Contact GmbH & Co. KG
LandOfFree
Contacting unit for a card-shaped carrier element of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Contacting unit for a card-shaped carrier element of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Contacting unit for a card-shaped carrier element of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2446029