Construction structures and manufacturing processes for...

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06815961

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the field of probe card assembly systems. More particularly, the invention relates to improvements in photolithography-patterned spring contacts and enhanced probe card assemblies having photolithography-patterned spring contacts for use in the testing or burn-in of integrated circuits.
BACKGROUND OF THE INVENTION
In conventional integrated circuit (IC) wafer probe cards, electrical contacts between the probe card and an integrated circuit wafer are typically provided by tungsten needle probes. However, advanced semiconductor technologies often require higher pin counts, smaller pad pitches, and higher clock frequencies, which are not possible with, tungsten needle probes.
While emerging technologies have provided spring probes for different probing applications, most probes have inherent limitations, such as limited pitch, limited pin count, varying levels of flexibility, limited probe tip geometries, limitations of materials, and high costs of fabrication.
K. Banerji, A. Suppelsa, and W. Mullen III, Selectively Releasing Conductive Runner and Substrate Assembly Having Non-Planar Areas, U.S. Pat. No. 5,166,774 (24 Nov. 1992) disclose a runner and substrate assembly which comprises “a plurality of conductive runners adhered to a substrate, a portion of at least some of the conductive runners have non-planar areas with the substrate for selectively releasing the conductive runner from the substrate when subjected to a predetermined stress”.
A. Suppelsa, W. Mullen III and G. Urbish, Selectively Releasing Conductive Runner and Substrate Assembly, U.S. Pat. No. 5,280,139 (18 Jan. 1994) disclose a runner and substrate assembly which comprises “a plurality of conductive runners adhered to a substrate, a portion of at least some of the conductive runners have a lower adhesion to the substrate for selectively releasing the conductive runner from the substrate when subjected to a predetermined stress”.
D. Pedder, Bare Die Testing, U.S. Pat. No. 5,786,701 (28 Jul. 1998) disclose a testing apparatus for testing integrated circuits (ICs) at the bare die stage, which includes “a testing station at which microbumps of conductive material are located on interconnection trace terminations of a multilayer interconnection structure, these terminations being distributed in a pattern corresponding to the pattern of contact pads on the die to be tested. To facilitate testing of the die before separation from a wafer using the microbumps, the other connections provided to and from the interconnection structure have a low profile”.
D. Grabbe, I. Korsunsky and R. Ringler, Surface Mount Electrical Connector, U.S. Pat. No. 5,152,695 (06 Oct. 1992) disclose a connector for electrically connecting a circuit between electronic devices, in which “the connector includes a platform with cantilevered spring arms extending obliquely outwardly therefrom. The spring arms include raised contact surfaces and in one embodiment, the geometry of the arms provide compound wipe during deflection”.
H. Iwasaki, H. Matsunaga, and T. Ohkubo, Partly Replaceable Device for Testing a Multi-Contact Integrated Circuit Chip Package, U.S. Pat. No. 5,847,572 (08 Dec. 1998) disclose “a test device for testing an integrated circuit (IC) chip having side edge portions each provided with a set of lead pins. The test device comprises a socket base, contact units each including a contact support member and socket contact numbers, and anisotropic conductive sheet assemblies each including an elastic insulation sheet and conductive members. The anisotropic conductive sheet assemblies are arranged to hold each conductive member in contact with one of the socket contact members of the contact units. The test device further comprises a contact retainer detachably mounted on the socket base to bring the socket contact members into contact with the anisotropic sheet assemblies to establish electrical communication between the socket contact members and the conductive members of the anisotropic conductive sheet assemblies. Each of the contact units can be replaced by a new contact unit if the socket contact members partly become fatigued, thereby making it possible to facilitate the maintenance of the test device. Furthermore, the lead pins of the IC chip can be electrically connected to a test circuit board with the shortest paths formed by part of the socket contact members and the conductive members of the anisotropic conductive sheet assemblies”.
W. Berg, Method of Mounting a Substrate Structure to a Circuit Board, U.S. Pat. No. 4,758,9278 (19 Jul. 1988) discloses “a substrate structure having contact pads is mounted to a circuit board which has pads of conductive material exposed at one main face of the board and has registration features which are in predetermined positions relative to the contact pads of the circuit board. The substrate structure is provided with leads which are electrically connected to the contact pads of the substrate structure and project from the substrate structure in cantilever fashion. A registration element has a plate portion and also has registration features which are distributed about the plate portion and are engageable with the registration features of the circuit board, and when so engaged, maintain the registration element against movement parallel to the general plane of the circuit board. The substrate structure is attached to the plate portion of the registration element so that the leads are in predetermined position relative to the registration features of the circuit board, and in this position of the registration element the leads of the substrate structure overlie the contact pads of the circuit board. A clamp member maintains the leads in electrically conductive pressure contact with the contact pads of the circuit board”.
D. Sarma, P. Palanisamy, J. Hearn and D. Schwarz, Controlled Adhesion Conductor, U.S. Pat. No. 5,121,298 (09 Jun. 1992) disclose “Compositions useful for printing controllable adhesion conductive patterns on a printed circuit board include finely divided copper powder, a screening agent and a binder. The binder is designed to provide controllable adhesion of the copper layer formed after sintering to the substrate, so that the layer can lift off the substrate in response to thermal stress. Additionally, the binder serves to promote good cohesion between the copper particles to provide good mechanical strength to the copper layer so that it can tolerate lift off without fracture”.
R. Mueller, Thin-Film Electrothermal Device, U.S. Pat. No. 4,423,401 (27 Dec. 1983) discloses “A thin film multilayer technology is used to build micro-miniature electromechanical switches having low resistance metal-to-metal contacts and distinct on-off characteristics. The switches, which are electrothermally activated, are fabricated on conventional hybrid circuit substrates using processes compatible with those employed to produce thin-film circuits. In a preferred form, such a switch includes a cantilever actuator member comprising a resiliently bendable strip of a hard insulating material (e.g. silicon nitride) to which a metal (e.g. nickel) heating element is bonded. The free end of the cantilever member carries a metal contact, which is moved onto (or out of) engagement with an underlying fixed contact by controlled bending of the member via electrical current applied to the heating element”.
S. Ibrahim and J. Elsner, Multi-Layer Ceramic Package, U.S. Pat. No. 4,320,438 (16 Mar. 1982) disclose “In a multi-layer package, a plurality of ceramic lamina each has a conductive pattern, and there is an internal cavity of the package within which is bonded a chip or a plurality of chips interconnected to form a chip array. The chip or chip array is connected through short wire bonds at varying lamina levels to metallized conductive patterns thereon, each lamina level having a particular conductive pattern. The conductive patterns on the respective lamina layers are interconnected either by tunneled through openings filled with metallized material, or by

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Construction structures and manufacturing processes for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Construction structures and manufacturing processes for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Construction structures and manufacturing processes for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3289242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.