Constriction device including reinforced suture holes

Surgery – Instruments – Sutureless closure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S151000

Reexamination Certificate

active

06632239

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is generally directed to a constriction device that constricts body tissue. The present invention is more particularly directed to a constriction device that includes reinforced suture holes to permit a suture to maintain the constriction device from being dislodged from the constricted body tissue while protecting the integrity of the constriction device.
Constriction devices have been contemplated for constricting body tissue. Such devices have been considered for use, for example, in tissue resection procedures and in treating pulmonary disease.
Chronic Obstructive Pulmonary Disease (COPD) has become a major cause of morbidity and mortality in the United States over the last three decades. COPD is characterized by the presence of airflow obstruction due to chronic bronchitis or emphysema. The airflow obstruction in COPD is due largely to structural abnormalities in the smaller airways. Important causes are inflammation, fibrosis, goblet cell metaplasia, and smooth muscle hypertrophy in terminal bronchioles.
The incidence, prevalence, and health-related costs of COPD are on the rise. Mortality due to COPD is also on the rise. In 1991 COPD was the fourth leading cause of death in the United States and had increased 33% since 1979.
COPD affects the patient's whole life. It has three main symptoms: cough; breathlessness; and wheeze. At first, breathlessness may be noticed when running for a bus, digging in the garden, or walking up hill. Later, it may be noticed when simply walking in the kitchen. Over time, it may occur with less and less effort until it is present all of the time.
COPD is a progressive disease and currently has no cure. Current treatments for COPD include the prevention of further respiratory damage, pharmacotherapy, and surgery. Each is discussed below.
The prevention of further respiratory damage entails the adoption of a healthy lifestyle. Smoking cessation is believed to be the single most important therapeutic intervention. However, regular exercise and weight control are also important. Patients whose symptoms restrict their daily activities or who otherwise have an impaired quality of life may require a pulmonary rehabilitation program including ventilatory muscle training and breathing retraining. Long-term oxygen therapy may also become necessary.
Pharmacotherapy may include bronchodilator therapy to open up the airways as much as possible or inhaled &bgr;-agonists. For those patients who respond poorly to the foregoing or who have persistent symptoms, Ipratropium bromide may be indicated. Further, courses of steroids, such as corticosteroids, may be required. Lastly, antibiotics may be required to prevent infections and influenza and pheumococcal vaccines may be routinely administered. Unfortunately, there is no evidence that early, regular use of pharmacotherapy will alter the progression of COPD.
Lung transplantation is also an option. Today, COPD is the most common diagnosis for which lung transplantation is considered. Unfortunately, this consideration is given for only those with advanced COPD. Given the limited availability of donor organs, lung transplant is far from being available to all patients.
About 40 years ago, it was first postulated that the tethering force that tends to keep the intrathoracic airways open was lost in emphysema and that by surgically removing the most affected parts of the lungs, the force could be partially restored. Although the surgery was deemed promising, the procedure was abandoned.
The lung volume reduction surgery (LVRS) was later revived. In the early 1990's, hundreds of patients underwent the procedure. However, the procedure has fallen out of favor due to the fact that Medicare stopped remitting for LVRS. Unfortunately, data is relatively scarce and many factors conspire to make what data exists difficult to interpret. The procedure is currently under review in a controlled clinical trial. However, what data does exist tends to indicate that patients benefited from the procedure in terms of an increase in forced expiratory volume, a decrease in total lung capacity, and a significant improvement in lung function, dyspnea, and quality of life.
Improvements in pulmonary function after LVRS have been attributed to at least four possible mechanisms. These include enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory musculature, and improved right ventricular filling.
The improvements in pulmonary function resulting from LVRS cannot be ignored. However, the surgery is very invasive and fraught with complications. Among the complications is the potential for lung air leaks. Lung tissue is very thin, and fragile hence difficult to suture together. After a lung portion is sectioned and removed, the remaining lung is most often restructured with suture staples. In about thirty percent (30%) of the cases, the difficulty with suturing lung tissue results in air leaks. Treatment for such air leaks depends upon their severity and often, in the most serious cases, requires further open chest surgery.
Air leaks in lungs can be caused by other causes. With increasing age, a patient may develop a weakened section of lung which may then rupture due to an extreme pressure differential, such as may result from simply a hard sneeze. AIDS patients can suffer from air leaks in their lungs. Air leaks in lungs can further be caused by a puncture from a broken rib or a stab wound.
The invention disclosed and claimed in copending U.S. application Ser. No. 09/534,244, incorporated herein by reference, provides an improved therapy for treating COPD and air leaks in lungs. The therapy includes a constriction device which, when deployed on a lung, suppresses air leaks in the lung tissue without requiring any suturing of the effected lung tissue. Still further, by constricting a large enough portion of a lung with the device, lung volume reduction with the concomitant improved pulmonary function may be obtained without the need for any suturing of lung tissue at all.
The lung constriction device includes a jacket or sheath of flexible material configured to cover at least a portion of a lung. The jacket has a pair of opened ends to permit the lung portion to be drawn into the jacket. The jacket is dimensioned to constrict the lung portion after the lung portion is drawn therein. The lung constriction device is preferably formed of expandable, such as elastic, material for receiving the lung tissue while the device is in an expanded or enlarged condition, and then contractible about the lung portion upon release of the expanded condition for constricting the lung tissue.
An important aspect of the device and method disclosed in U.S. application Ser. No. 09/534,244 is the ability to sever the constricting device intermediate its ends. This allows a significant portion of the constricted lung tissue to be removed altogether while permitting a portion of the constricting device to remain in the body for continued suppression of air leaks and maintenance of the remaining lung tissue integrity.
Devices and methods similar to those disclosed in U.S. application Ser. No. 09/534,244 may be employed to advantage in other and different procedures such as in general resection procedures and for body tissue other than lung tissue. Resection procedures are commonly performed for such body tissue as, for example, atrial appendage tissue, ovarian tissue, gall bladder tissue, pancreatic tissue, appendix tissue and spleen tissue. Resection procedures may be required to treat cancer, organ damage, or organ disease, for example.
U.S. application Ser. No. 09/534,244 also discloses and claims various methods and apparatus for deploying the constricting device on body tissue such as lung tissue. One apparatus and method contemplates mechanically expanding the device in a transverse dimension while physically pulling the tissue to be constricted into the device.
Another method contemplates mounting the device over a vacuum chamber and pulling the ti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Constriction device including reinforced suture holes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Constriction device including reinforced suture holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Constriction device including reinforced suture holes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3126627

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.