Constant heating value aqueous fuel mixture and method for...

Fuel and related compositions – Liquid fuels – Emulsion fuel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C044S302000

Reexamination Certificate

active

06656236

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to aqueous fuel compositions and more particularly, to aqueous fuel compositions whose ingredients are combined in relative proportion so as to achieve a final fuel formulation having a somewhat constant heating value regardless of the hydrocarbon used and the amount and type of alcohol selected. Aqueous fuel emulsion compositions are desirable for use in internal combustion engines because when combusted they produce reduced levels of nitrogen oxide (NOx) emissions.
BACKGROUND OF THE INVENTION
One problem with using diesel-fueled engines is to the relatively high flame temperatures reached during combustion. Such high temperatures increase the tendency for the production of nitrogen oxides (NOx). These are formed from both the combination of nitrogen and oxygen in the combustion chamber and from the oxidation of organic nitrogen species in the fuel. Nitrogen oxides comprise a major irritant in smog and are believed to contribute to tropospheric ozone, which is a known threat to health. Environmental considerations and government regulations have increased the need to reduce NOx production. Various methods for reducing NOx production include the use of catalytic converters, engine timing changes, exhaust recirculation, and the burning of “clean” fuels. These methods are generally too expensive and/or too complicated to be placed in widespread use.
The rates at which NOx are formed are related to the flame temperature. It has been shown that a small reduction in flame temperature can result in a large reduction in the production of nitrogen oxides. One approach to lowering the flame temperature is to inject water in the combustion zone, however; this requires costly and complicated changes in engine design. The latest attempt to use water to reduce flame temperature is the use of aqueous fuels, i.e., incorporating both water and fuel into an emulsion.
There are various ingredients typically used to make a fuel emulsion including a hydrocarbon, water, alcohol, surfactants, and other additives. Some of these ingredients have a net heat of combustion or lower heating value which means the lower heating value of the final fuel changes based on the amount and type of ingredients selected. Engine manufacturers, however, typically size the engine fuel system based on the heating value per gallon of fuel and cannot tolerate significant variations in final fuel formulations. Thus many aqueous fuel emulsions are formulated with very specific recipes and do not allow for fuel ingredient variability.
For a number of reasons, it would be desirable to develop an aqueous fuel emulsion that can incorporate a wide variety of hydrocarbon sources and can tolerate varying amounts and types of alcohols. For example, alcohols are often used to prevent the aqueous fuel emulsion from freezing at lower ambient temperatures. However, the use of alcohols should be minimized for cost and engine ignition quality considerations. Clearly, there are some engine operating conditions that would warrant increasing the alcohol content of the fuel formulation notwith-standing the extra cost. Similarly, there are some engine operating considerations that would warrant using various hydrocarbon sources, based on the hydrocarbon availability and cost. Thus, it is apparent that there are various engine operating conditions that would benefit from variations in aqueous fuel emulsion formulations.
DISCLOSURE OF THE INVENTION
In general, the invention features a method of formulating a substantially ashless fuel composition that includes: (a) hydrocarbon petroleum. distillate; (b) purified water; (c) alcohols; and (d) an additive package composition comprising various ingredients where a single ingredient may perform multiple functions. The fuel composition preferably is in the form of an aqueous fuel emulsion that is stable at temperatures and pressures encountered during recirculation in a compression ignited engine. The fuel emulsion can be either water continuous emulsion or more preferably a fuel continuous emulsion. More importantly, the aqueous fuel composition can be tailored for specific engine operating conditions by varying the types and amounts of hydrocarbon petroleum distillate and alcohol used while maintaining said aqueous fuel composition within a specified range of acceptable lower heat value.
In preferred embodiments, the fuel emulsion composition includes a hydrocarbon petroleum distillate, purified water, alcohol, and an additive composition that includes an emulsifier and may include other additives such as cetane improvers, surfactants, corrosion inhibitors, lubricity additives, biocides, and antifoam agents.
In the fuel continuous embodiment, the amount of the hydrocarbon petroleum distillate preferably is between about 60 weight percent and about 95 weight percent of the fuel composition, more preferably between about 70 weight percent and about 90 weight percent of the fuel composition.
The purified water preferably contains no greater than about 50 parts per million calcium and magnesium ions, and no greater than about 20 parts per million silicon. More preferably, the purified water contains no greater than about 2 parts per million calcium and magnesium ions, and no greater than about 1 part per million silicon. The amount of purified water preferably is between about 5 weight percent and about 40 weight percent of the fuel composition, more preferably between about 10 weight percent and about 30 weight percent of the fuel composition.
In the water continuous emulsion, the emulsifier preferably is selected from the group consisting of nonionic, anionic, and amphoteric emulsifiers, and combinations thereof. An example of a preferred alkyl amphoteric emulsifier for such water continuous fuel emulsion embodiment is one having at least 12 carbon atoms. A specific example is dihydroxyethyl tallow glycinate. The amount of the alkyl amphoteric emulsifier preferably is between about 0.01 weight percent and about 0.1 weight percent of the fuel composition.
In addition, the water continuous fuel emulsion embodiments includes an alkylphenolethoxylate (e.g., a polyethoxylated nonylphenol having between about 8 and 12 moles of ethylene oxide per mole of nonylphenol, more preferably about 9 moles of ethylene oxide per mole of nonylphenol), an alcohol ethoxylate, a fatty alcohol ethoxylate, an alkyl amine ethoxylate, or a combination thereof within the additive package. In the case of alkylphenol-ethoxylates, the ingredient preferably is present in an amount ranging from about 0.4 weight percent to about 1.0 weight percent of the fuel composition.
The water continuous fuel emulsion embodiment additive composition also may include an organophosphoric or carboxylic mono-, di-, or tri-functional acid having at least 12 carbon atoms. An example of a preferred acid is selected from the group consisting of di- and tri-acids of the Diels-Alder adducts of unsaturated fatty acids (preferably having between about 12 and about 22 carbon atoms) and mixtures thereof. For example, the acid may be a C
21
dicarboxylic acid derived from the Diels-Alder adduct of maleic anhydride and oleic acid. The amount of the mono-, di-, or tri-acid preferably is between about 0.04 weight percent and about 0.1 weight percent of the fuel composition, more preferably between about 0.04 weight percent and about 0.05 weight percent of the fuel composition.
The water continuous fuel emulsion additive composition also includes an alkanolamine. Examples of preferred alkanolamines include those selected from the group consisting of amino methyl propanol, triethanolamine, diethanolamine, and combinations thereof, with amino methyl propanol being preferred. The amount of the alkanolamine preferably is between about 0.05 weight percent and about 0.4 weight percent of the fuel composition, more preferably about 0.06 weight percent of the fuel composition.
The water continuous fuel emulsion additive composition further includes an aminoalkanoic acid. An example of a preferred aminoalkanoic acid is avail

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Constant heating value aqueous fuel mixture and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Constant heating value aqueous fuel mixture and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Constant heating value aqueous fuel mixture and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3166715

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.