Electrical connectors – With insulation other than conductor sheath – Plural-contact coupling part
Reexamination Certificate
2002-05-06
2004-08-03
Nguyen, Khiem (Department: 2839)
Electrical connectors
With insulation other than conductor sheath
Plural-contact coupling part
C439S076100
Reexamination Certificate
active
06769936
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to electronic components and particularly to an improved design and method of manufacturing a single- or multi-connector assembly which may include internal electronic components.
2. Description of Related Technology
Modular connectors, such as for example those of the “RJ” configuration, are well known in the electronics industry. Such connectors are adapted to receive one or more modular plugs of varying type (e.g., RJ-45 or RJ-11), and communicate signals between the terminals of the modular plug and the parent device with which the connector is associated. Commonly, some form of signal conditioning (e.g., filtering, voltage transformation, or the like) is performed by the connector on the signals passing through it.
Many different considerations are involved with producing an effective and economically viable connector design. Such considerations include, for example: (i) volume and “footprint” available for the connector; (ii) the need for electrical status indicators (e.g., LEDs); (iii) the cost and complexity associated with assembling and manufacturing the device; (iv) the ability to accommodate various electrical components and signal conditioning configurations; (v) the electrical and noise performance of the device; (vi) the reliability of the device; (vii) the ability to modify the design to accommodate complementary technologies; (viii) compatibility with existing terminal and “pin out” standards and applications; (ix) ability to configure the connector as one of a plurality of ports, potentially having individually variant internal component configurations, and (ix) potentially the maintenance or replacement of defective components.
Myriad different configurations for modular connectors have been heretofore disclosed in the prior art. However, these prior art configurations are not optimized in terms of the foregoing considerations. For example, many connector designs, while providing a low manufacturing cost, do not possess the necessary electrical or radiated noise performance required by particular applications. Designs which do meet these performance and noise requirements are often complex, require numerous manufacturing steps, and/or difficult to assembly, thereby raising cost and potentially detracting from reliability. Alternatively, the plurality of electrical signal conditioning components required to meet performance standards cannot be readily contained within the required connector volume/footprint without increasing noise/cross-talk, or significantly altering the connector terminal array configuration.
Accordingly, it would be most desirable to provide an improved electrical connector design that would yield a simple and reliable connector with superior electrical and noise performance, and further facilitate economical fabrication. Such a connector design would ideally allow for the use of anything ranging from none to a variety of different electronic signal conditioning components in the connector signal path(s), as well as status indicators if desired, without affecting connector profile or footprint, or requiring changes to the housing. The improved connector design would also facilitate easy assembly, as well as removal of the internal components of the device if required. The design would further be amenable to integration into a multi-port connector assembly, including the ability to vary the configuration of the internal components associated with each port of the assembly individually.
SUMMARY OF THE INVENTION
The present invention satisfies the aforementioned needs by an improved modular connector apparatus and method for manufacturing the same.
In a first aspect of the invention, an improved connector assembly for use on, inter alia, a printed circuit board or other device is disclosed. The connector assembly generally comprises a connector housing having a single port; an insertion assembly having (i) an insert element, (ii) a plurality of first and second conductors mated to the insert element; and (iii) at least one substrate disposed in the housing in proximity to the insert element, the substrate having at least one electrical component disposed thereon and in the electrical pathway between the first conductors and the second conductors. In one exemplary embodiment, the insert assembly is substantially planar, and includes a plurality of cavities or recesses adapted to receive carriers formed around the respective sets of conductors. The insert assembly receives the substrate (and electrical component(s)) such that direct electrical connection with the first and second sets of conductors is accomplished within a minimum amount of space, and with minimal conductor length. Light sources (e.g., LEDs) are optionally disposed within apertures in the front of the housing and electrically terminated to traces on the substrate, these traces being terminated to a third set of conductors disposed within a carrier in the rear portion of the insert assembly.
In a second exemplary embodiment, the assembly comprises a connector housing having a plurality of connectors arranged in side-by-side (“1×N”) configuration, each of the connectors incorporating the insert assembly described above. The insert assemblies for each respective port may be uniform in configuration, or alternatively may be varied as desired to provide differing functionality.
In a second aspect of the invention, an improved insert assembly for use with a modular connector is disclosed. In one exemplary embodiment, the insert assembly comprises a molded low-profile insert element having a plurality of cavities formed therein; a plurality of first conductors adapted for mating with respective terminals of a modular plug, at least a portion of the first conductors being received within a first of said cavity; a plurality of second conductors adapted for electrical interface with an external device, the second conductors being disposed at least partly within a second of the cavities; and a substrate communicating with the insert element and having a plurality of conductive traces associated therewith, the conductive traces forming electrical pathways between at least some of the first and second conductors. In a second embodiment, the assembly further includes a plurality of light sources electrically communicating with traces on the substrate, and third set of conductors in communication with the traces, thereby forming an electrical path through the connector assembly with the light sources.
In a third aspect of the invention, an improved insert element adapted for use in the modular connector insert assembly previously described is disclosed. In one exemplary embodiment, the insert element comprises an insert body having: (i) a front portion having a first cavity formed therein, and a plurality of first apertures formed within the front portion and communicating with the first cavity, the first apertures being adapted to receive respective ones of the first conductors; (ii) a rear portion having at least a second cavity formed therein, and a plurality of second apertures formed in the rear portion and communicating with the second cavity, the second apertures being adapted to receive respective ones of the second conductors; and (iii) at least one surface adapted to communicate with the internal substrate, the surface being disposed proximate to the first and second apertures, thereby allowing direct connection of conductive traces of the substrate with the first and second conductors.
In a fourth aspect of the invention, an improved electronic assembly utilizing the aforementioned connector assembly is disclosed. In one exemplary embodiment, the electronic assembly comprises the foregoing connector assembly which is mounted to a printed circuit board (PCB) substrate having a plurality of conductive traces formed thereon, and bonded thereto using a reflow soldering process, thereby forming a conductive pathway from the traces through the conductors of the respective conductors of t
Gutierrez Aurelio J.
Rong Tsou Zheng
Gazdzinski & Associates
Nguyen Khiem
Pulse Engineering
LandOfFree
Connector with insert assembly and method of manufacturing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Connector with insert assembly and method of manufacturing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connector with insert assembly and method of manufacturing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3272989