Connector for optical fibers

Optical waveguides – With disengagable mechanical connector – Optical fiber/optical fiber cable termination structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06250818

ABSTRACT:

BACKGROUND
The invention relates to connectors for signal conductors such as optical communication fibers.
Known fiber optic connectors enable two optical fibers to be connected end-to-end, or allow the connection of a fiber to a device, such as optical sources (lasers and LED's), optical receivers (PIN or APD diodes), etc. Fiber optic connectors are generally designed to minimize losses in the connection.
Several quick-fit standard connectors are known for use with optical fiber. An “FC” connector is a circular metal connector, where the male-to-female mechanical parts thread together. An “ST” connector is much like a BNC connector. The mechanical parts of an ST connector include a male metal cylindrical bayonet part that inserts into a cylindrical female part. The male part has a small stud that protrudes radially, that fits into a J-shaped channel in the wall of the female part. Once the stud reaches the bottom point of the J, a tension spring holds it there. An “SC” connector is rectangular, generally made of plastic, and the two mating components are mechanically conjoined by a snap-fit tongue. There are other standards for quick-fit optical connectors, as well.
In these three example standards, the terminal centimeter or so of the fiber is held in a ceramic ferrule, about 2.5 mm in diameter. (Other standards use other diameters for the ferrules, for instance 1.5 mm.) A ceramic split sleeve assists the mechanical parts of the connectors to hold two ferrules in an opposed coaxial relationship, so that an optical signal from one fiber falls on the end of the other.
Optical fiber based transmission systems have historically been designed to maximize optical power transmission to achieve high-speed, long-distance communications. More recently, optical fiber based systems are deployed in relatively short-distance applications and within other complex optical systems that require that the optical power be managed. Optical attenuators regulate the absolute power level of light traveling within any given path of an optical transmission system. In short distance applications, excessive power is attenuated to maintain the strength of an optical signal within a certain range, to avoid receiver saturation. More advanced optical systems, such as those employing fiber amplifiers and wavelength division multiplexing (WDM) or dense wavelength division multiplexing (DWDM), require careful optical power management in order to optimize system performance.
SUMMARY
In general, in a first aspect, the invention features a connector. A coupler is designed to affix an optical component. A cable mounting structure is designed to retain an end of an optical fiber in an optical alignment with the optical component. The cable mounting structure bears threads mating to threads of an adjuster. An axial relative displacement between the cable mounting structure and the optical component is adjustable by relative rotation of the cable mounting structure and adjuster. A threaded locknut is designed to jam relative rotation of the cable mounting structure and adjuster to secure a position of the relative rotation of relative rotation of the cable mounting structure and adjuster.
In general, in a second aspect, the invention features a connector. A coupler is designed to affix an optical component. A cable mounting structure is designed to retain an optical cable, and to retain a terminating ferrule in an optical alignment with the optical component. A distance between a front face of the termination ferrule and a tail end of the cable mounting structure is no more than about 1.740″. An adjuster bears threads mating to threads of the cable mounting structure. An axial relative displacement between the cable mounting structure and the optical component is adjustable by relative rotation of the cable mounting structure and adjuster.
In general, in a third aspect, the invention features a connector. A coupler is designed to affix an optical component. A cable mounting structure is designed to retain an optical cable, and to retain a terminating ferrule in an optical alignment with the optical component. An adjuster bears threads mating to threads of the cable mounting structure. An axial relative displacement between the cable mounting structure and the optical component is adjustable by relative rotation of the cable mounting structure and adjuster. The length of the adjuster is no more than about 0.450″.
In general, in a fourth aspect, the invention features a connector. A coupler is designed to affix an optical component. A cable mounting structure is designed to retain an end of an optical cable in an optical alignment with the optical component. An adjuster bears threads mating to threads of the cable mounting structure. An axial relative displacement between the cable mounting structure and the optical component is adjustable by relative rotation of the cable mounting structure and adjuster. The cable mounting structure bears a shoulder unitarily formed with a threaded component of the cable mounting structure, effective as a limit stop of to limit relative movement of the adjuster.
In general, in a fifth aspect, the invention features a connector. A coupler is designed to affix an optical component. A cable mounting structure is designed to retain an end of an optical cable in an optical alignment with the optical component. An adjuster bears threads mating to threads of the cable mounting structure. The adjuster is coupled in a fixed axial relationship with the coupler. An axial position of the cable mounting structure relative to the coupler is adjustable by rotation of the adjuster. The adjuster is urged by a spring directly, without an intervening thrust washer, on a non-rotating surface in a fixed rotational relationship to the coupler.
In general, in a sixth aspect, the invention features a connector. A coupler is designed to affix an optical component. A cable mounting structure is designed to retain an end of an optical cable in an optical alignment with the optical component. A chassis is in a stable axial relationship with the coupler. The chassis defines a channel within which the cable mounting structure is laterally and anti-rotationally stabilized. The chassis includes two primary parts unitized by an interference fit.
Particular embodiments of the invention may advantageously include one or more of the following features.
One surface of the mating threads may be gold plated and the other surface may be chromate plated. One surface of the bearing between the adjuster and the non-rotating surface may be gold plated, and the other surface of the bearing may be chromate plated.
The distance between the front face of the termination ferrule and the tail end of the cable mounting structure may be no more than about 1.700″ or 1.660″. The length of the adjuster may be no more than about 0.445″, 0.440″, 0.435″, 0.425″, or 0.420″.
The cable mounting structure may be held in an axial sliding relationship with the coupler, with anti-rotational stability provided by keyed mating of components of the connector. The keyed mating components may include male and female members mating at a regular polygon cross section. A key may mate with a key way of the optical component to be affixed, and the key and key way may be cooperatively designed to provide anti-rotational stability to the cable mounting structure.
The threading pattern of one of the mating threads may be deliberately distorted to induce added friction in the mating threads and to stabilize the axial relative displacement between the cable mounting structure and the optical component. The threading of the two mating threads may be deliberately preserved at a uniform thread pitch and contour. A resilient member may be integrated into the connector, designed to induce added friction in the mating threads and to stabilize the axial relative displacement between the cable mounting structure and the optical component.
The chassis may define a channel within which the cable mounting structur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Connector for optical fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Connector for optical fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connector for optical fibers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2444629

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.